

Journal Résolution des dépendances par système de branches

Posté par steckdenis (site web personnel) le 18 septembre 2009 à 22:16.

Étiquettes :

	opensuse

	slackware

[image:]

	
Bonjour,

Aujourd'hui, je vais vous parler de ce que j'ai codé cet après-midi, mais surtout de ce que j'ai pensé depuis maintenant un peu plus d'un mois.

Sous Linux, nous bénéficions généralement d'un système de gestion des paquets, assez performant. Un des problèmes que chacun de ces gestionnaires doit vaincre est la gestion des dépendances.

En effet, des paquets peuvent ne pas vouloir s'installer en compagnie d'autres, ou peuvent en nécessiter. Tout ceci peut vite devenir très complexe, quand un système de dépôt, de versions multiples, etc, sont mis en jeu.

Nous avons actuellement deux solveurs de dépendances qui sont fort connus, et quelques autres. Un des plus utilisé est APT (Advanced Packaging Tool) de Debian, qui résoud très bien tout un tas de dépendances très complexes, et ce très rapidement. C'en est presque devenu une référence. Un autre est Zypp, utilisé par OpenSuSE. Il a ouvert la voie à tous les autres en étant le premier à utiliser un algorithme de satisfaction booléenne. Nous pouvons également citer Yum de Fedora, et URPMI de Mandriva.

Après ces solveurs, il y a les "incomplets", c'est à dire ceux qui marchent mais ne permettent pas de gérer tous les cas. Nous avons Portage chez Gentoo qui ne permet pas de gérer les reverse-dependencies (donc si vous supprimez une bibliothèque, tous les programmes qui en dépendent restent, cassés), ainsi que Pacman de Arch Linux, qui semble également ne pas gérer les dépendances inverses. Il y a aussi les gestionnaires de paquets de distributions comme Slackware. Les autres, je ne les connais pas assez.

Après cette longue introduction, venons-en au fait : j'ai créé un solveur de dépendances assez intéressant :

	Il est complet à tous points : les reverse-dependencies sont gérées, les provides le seront également bientôt, et il trouve toutes les possibilités, et est capable de les présenter à l'utilisateur

	Il est extrêmement rapide : il ne fait jouer que les paquets nécessaires. Par exemple, le solveur SAT de OpenSuSE et APT nécessitent de lire toute la base de donnée des paquets, tandis que mon solveur ne charge que les paquets qui sont des dépendances, conflits, dépendances inverses, suggestions, remplaçants, etc

	Il est incroyablement simple : solver.cpp ne fait que 235 lignes !

Il utilise un concept assez intéressant, ou plutôt plusieurs :

	Une base de donnée "à la OpenSuSE", c'est à dire binaire, gérée par le solveur lui-même, et partant de principe qu'il faut éviter tous les for() (instructions de boucle qui rendent rapidement un programme très lent quand il a des millions d'entrées). Trouver les dépendances d'un paquet n'a que la complexité O(nombre de dépendances), et non O(nombre de paquets de la BDD) comme chez les autres. Trouver toutes les informations d'un paquet est en temps constant, trouver les versions d'un nom de paquet est O(nombre de versions), etc. C'est difficile à gérer (et à construire, je prend pour preuve databasewriter.cpp qui pèse 727 lignes), mais c'est foudroyant à l'utilisation

	Setup, le gestionnaire de paquets autour, a une particularité assez intéressante : il est très user-friendly (bien que seulement en console pour le moment) : sortie colorée, absolument toutes les chaînes sont traduites (y compris le titre, la description courte et la description longue d'un paquet)

	Logrammien. Ce système a été développé en premier lieu pour Logram, mon projet de distribution utilisant comme environnement de bureau KDE et son propre mini-environnement de bureau. Logram sera le plus user-friendly possible, et toutes les touches sont apportées (dont un système de paquet internationalisé et rapide, une intégration des outils à KDE, etc)

	Le solveur lui-même (pour revenir au sujet) utilise un système de branches, que je détaille maintenant

L'idée m'est venue en utilisant des systèmes de contrôles de versions (VCS). On peut aisément créer une branche, travailler dedans, et la supprimer si ça ne va pas. J'ai simplement appliqué ce principe aux gestionnaires de paquets, et ça a l'air de bien marcher.

Le principe est simple : au début de la résolution, on crée une branche (la branche principale). Dans cette branche, on place le paquet qu'on veut installer.

Ensuite, on explore ses dépendances. S'il n'y a pas de "choix", donc qu'on dépend par exemple de libqt4-gui et qu'il n'existe qu'une seule version de cette bibliothèque dans les dépôts, on la prend. S'il y a plusieurs choix possibles (ici plusieurs versions), on crée une branche par choix.

Ainsi, les branches divergent, et si quelque-chose n'est pas possible (conflit insoluble), on élimine la branche. A la fin de la résolution, devenue "bête et méchante" (c'est à dire qu'on installe les dépendances, supprime les conflits, etc sans se soucier du reste), on obtiens la liste des branches possibles.

Reste alors à les "peser", c'est à dire à obtenir un score pour chacune d'elle, en fonction de critères divers (nombre de paquets à installer/supprimer, mises à jour, taille à télécharger, etc). La branche la plus lourde est présentée à l'utilisateur, c'est potentiellement la meilleure. Les autres sont gardées, pour permettre à l'utilisateur de cliquer sur un bouton «Autre possibilité» si la solution présentée lui désinstalle son paquet de-la-mort-qui-tue qu'il veut garder.

Le résultat est élégant, et Qt aide (oui, c'est développé avec Qt). Le code est court, et marche. Il n'est pas encore assez propre, pas encore fini, mais est disponible sur le SVN de Logram à l'adresse svn://logram-project.org/logram/trunk/Distro/libs/libpackage (architecture bibliothèque/client powa :)). Le client console est là : svn://logram-project.org/logram/trunk/Distro/base/setup .

Pour le moment, cette bibliothèque et son client ne savent pas installer de paquets. C'est une affaire de semaines, la partie "difficile" étant faite (encore quelques détails à régler avec les provides et la liste des paquets installés, et c'est bon). Toute la partie création de paquets, mise sur le serveur et gestion des miroirs est faite.

Exemple concret

Mes explications sur l'architecture par branches ne me semblent pas assez claire. Je vais vous montrer un exemple, avec le dépôt contenant les paquet suivants :

	initng-plugins, qui dépend de initng >= 0.6.0

	initng en version 0.6.0

	initng en version 0.6.99-gitAug3009, dépendant de libinitng == 0.6.99-gitAug3009

	libinitng en version 0.6.99-gitAug3009

Je veux donc installer initng-plugins, donc je lance :

setup add initng-plugins

(note: pourquoi add ? Parce que install ne va pas, car si on préfixe le nom d'un paquet par "-", on le désinstalle, ce qui est plus pratique : setup add initng-plugins -libinitng-dev)

Voici simplement les étapes qui sont exécutées par le solveur :

	Créer la branche master, et y placer initng-plugins

	initng-plugins dépend de deux version (0.6.0 ou 0.6.99-gitAug3009) de initng

	Création d'une branche, dans laquelle on place initng-0.6.0

	initng-0.6.0 ne dépend plus de rien, on retourne true :)

	Dans la branche principale (oui, on recycle), on ajoute initng-0.6.99-gitAug3009

	initng-0.6.99-gitAug3009 dépend de libinitng-0.6.99-gitAug3009. On l'ajoute dans cette branche

	Il n'y a plus de dépendances, on peut retourner true :)

C'est un exemple simplissime, mais qui montre comment les branches permettent de facilement se tirer du problème dans devoir sortir une artillerie telle que SAT. Au final, on a deux branches, contenant respectivement :

	initng-plugins, initng-0.6.99-gitAug3009 et libinitng-0.6.99-gitAug3009

	initng-plugins, initng-0.6.0

On les pèse, et en fonction de ce que l'utilisateur veut (du bleeding endge ou du stable), on installera la première ou la deuxième.

Voilà, le journal du vendredi qui ne trolle pas trop. J'espère que je ne fais pas fausse route, mais chez moi, avec un dépôt un peu plus complexe, ça marche :

$./setup add initng-plugins

{

 "initng-plugins" "0.6.99+gitAug302009~1"

 "initng" "0.6.99+gitAug302009~1"

 "libinitng" "0.6.99+gitAug302009~1"

}

{

 "initng-plugins" "0.6.99+gitAug302009~1"

 "initng" "0.6.98"

 "libinitng" "0.6.99+gitAug302009~1"

}

{

 "initng-plugins" "0.6.98"

 "initng" "0.6.99+gitAug302009~1"

 "libinitng" "0.6.99+gitAug302009~1"

}

PS: Oui, dans mon résultat, les *-0.6.98 dépendent des version Git, c'est normal, j'avais la flemme de changer la version des dépendances :-° (surtout que comme c'est maintenant, ça induit un petit stress en plus du côté des reverse-dependencies, donc on va pouvoir s'amuser :))

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

