

Journal Bref j'ai créé une bibliothèque Rust et un moteur ibus (et je cherche comment les packager)

Posté par Allan Simon (site web personnel) le 07 octobre 2014 à 15:32.
Licence CC By‑SA.

Étiquettes :

	ibus

	rust

	chinois

	debian

[image:]

Ce journal a été promu en dépêche : Bref, j'ai créé une bibliothèque Rust et un moteur iBus (et je cherche comment les empaqueter).

Sommaire

	
	Contexte

	
Comment écrire une bibliotheque Rust, compatible ABI C, sans runtime (i.e avec un joli .so et .h a la fin)
	Générer un .so avec Rust

	Rendre les noms de fonctions compatibles avec l'ABI C

	faire des choses plus compliquées

	
ibus-pinyintones: pour les personnes qui apprennent le Chinois et oublient toujours les tons
	pourquoi un moteur alternatif pour taper chinois

	Caractéristique de ibus-pinyintone , différence avec les moteurs habituels

	Demande d'aide: comment créer un paquet Debian de tout cela

	Vers l'infi et l'au delà

Bonjour nal

Pour le décideur pressé, j'ai écrit:

	une lib en rust, compatible ABI C (c.a.d un joli .so et .h) pour manipuler du pinyin librustpiniyn

	un moteur ibus pour taper chinois en précisant les tons, utilisant la lib du dessus ibus-pinyintone

	un ensemble d'exemples sur comment créer des lib Rust appelables comme si c'était une lib C ffi-rust

et je me demande comment je pourrais packager les deux premiers dans un joli .deb qui va bien

Contexte

Tu as surement entendu parler de Rust, ce nouveau langage de programmation hype, tellement hype qu'il n'est pas encore stable, écrit par Mozilla.

Les promesses de Rust qui m'ont seduit:

	(quasi) sans-runtime: rien ne se passe dans votre dos, possibilité de distribuer des binaires compilés depuis Rust sans devoir faire installer a l'utilisateur une JVM de plus

	langage compilé: si vous pouvez le lancer le binaire il y a peu de chances que ca plante dans les 2 premières secondes parce que vous avez fait une coquille

	langage fortement typé avec devinage automatique des types: le beurre et l'argent du beurre, pas d'arguments qui sont parfois des entiers, parfois des chaines de caractères car votre collègue incompétent a parfois fait le parseint avant, parfois après, parfois pas, tout en n'ayant pas besoin de préciser que le type à chaque fois quand c'est évident

	possibilité d'être compatible avec l'ABI C

	une librairie standard très complète (des primitives pour faire du code multi-tâches, un décodeur json intégré, que du bonheur)

	des structures et des traits, pas d'héritage

	possibilité de faire les choses de manière fonctionelle (closure etc.)

	performance qui rivalise avec C++ (tout du moins à terme, mais c'est déjà plus ou moins le cas)

	un compilateur très strict avec des jolis messages d'erreurs très lisibles

	une communauté vibrante (merci #rust sur IRC)

	un système de build et de gestion de dépendanceé simplissime (cargo build et c'est bon)

bref du coup je me suis dit que ce langage serait parfait pour moi qui aime le C++ (surtout depuis C++11) et Python, en gros le meilleur de ces deux mondes réunis.

J'ai donc fait pendant mes vacances, a l'aide d'un ami, une bibliothèque Rust pour convertir du pinyin, qui est en gros la transcription phonétique standardisée en alphabet latin du Chinois mandarin, en caractères chinois. par exemple de pouvoir convertir ni3hao3 en 你好.

La bibliothèque une fois créée sera utilisée par un moteur ibus (ibus étant le système le plus commun sous Linux pour taper des langues qui se tapent mal avec un clavier standard, ibus offrant les briques communes, capture des entrées clavier etc. , et les moteurs eux offrent la logique spécifique à une langue, par exemple on peut avoir ibus installé avec un moteur pour le chinois, et un moteur pour le japonais)

Les moteurs ibus étant le plus souvent écrits soit en C, soit en Python (ibus n'offrant les bindings que pour ces deux langages à ma connaissance, et quand bien, le peu de code d'exemple sont écrits dans l'un de ces deux langages), et ayant trouvé un exemple de template de moteur ibus-tmpl en C, il était plus simple d'avoir toute la logique en Rust (isolé dans la bibliotheque) et la glue du moteur en C pour réutiliser le code d'exemple.

Comment écrire une bibliotheque Rust, compatible ABI C, sans runtime (i.e avec un joli .so et .h a la fin)

les exemples (ainsi que d'autres plus complexes) peuvent être retrouvés sur le projet github https://github.com/allan-simon/ffi-rust

Générer un .so avec Rust

deux manières de procéder, soit directement dans le fichier Rust .rs ou en le précisant dans le fichier Cargo.toml (le "MakeFile" de rust)

pour les petits projets il suffit simplement de mettre #![crate_type = "dylib"] au début du fichier

#![crate_type = "dylib"]
pub extern fn hello_world() {
 println!("hello world");
}

(pub extern est là pour dire que la fonction doit être exportée, ainsi que pour dire au compilateur de ne pas s'inquiéter s'il ne voit pas la fonction hello_world utilisée, que ce n'est pas du code mort.)

ou dans le fichier cargo

[package]
name = "votre_lib_qui_va_bin"
version = "0.0.1"
authors = ["Votre Nom <votre@email.com>"]
[lib]
name = "nomdelalib"
path = "src/lib.rs"
crate-type = ["dylib"]

et cela génère dans les deux les deux un cas un fichier .so qui va bien, mais appelable que depuis un autre projet Rust

Rendre les noms de fonctions compatibles avec l'ABI C

pour pouvoir appeler la fonction Rust depuis du C, du Python etc., il faut que son nom soit prédictible, pour cela, hyper simple, il suffit de rajouter la directive #[no_mangle] au-dessus de la fonction, ce qui nous donne

#![crate_type = "dylib"]

#[no_mangle]
pub extern fn hello_world() {
 println!("hello world");
}

et voila, rien de plus rien de moins, et vous avez à présent un .so compatible ABI C, ce qui vous permet par exemple de l'appeler depuis Python en faisant

import ctypes
votrelib = ctypes.CDLL("libvotrelib.so")
votrelib.hello_world()

magique non?

faire des choses plus compliquées

Je ne rentrerais pas dans de longs détails ici, juste qu'il est assez simple de créer une lib, même très complexe depuis C en suivant les conseils ci-dessous:

	il est assez simple d'échanger des int / string dans les deux sens entre Rust et C (avec une légère conversion a faire pour les string, comme elles finissent par \0 en C et pas en Rust)

	pour les types plus complexes (du style HashMap etc.), essayer au maximum de tout faire en Rust, et de n'utiliser C que pour transporter le pointeur sur la structure d'un appel Rust à un autre

Si des gens sont intéressés je verrai peut-être pour écrire un guide en détails sur des exemples plus poussés (passage de callback, comment gérer la mémoire etc., comment se passer du runtime etc.)

ibus-pinyintones: pour les personnes qui apprennent le Chinois et oublient toujours les tons

pourquoi un moteur alternatif pour taper chinois

Cette partie là est un peu moins technique, vu que je pense que beaucoup moins de personnes sont intéressées sur "comment écrire votre propre moteur Ibus", donc ici le but était pour moi qui apprends le Chinois d'avoir un moyen de me forcer à me souvenir des "tons" des mots Chinois.

Pour ceux qui ne connaissent pas le Chinois, les tons sont une composante super importante du Chinois oral. Pour donner une similarité avec le Francais, lisez a voix haute "Tu viens manger." et "Tu viens manger ?", vous remarquez que pour la question on monte le ton en fin de phrase, ce qui permet a l'oral de distinguer la question de l'affirmation. Maintenant imaginez en Chinois le même concept mais syllabe par syllabe et non plus pour savoir savoir si une question est affirmative ou interrogative mais tout simplement pour savoir quel caractère Chinois c'est.

Le ton est super important en Chinois, car le nombre de sons en chinois est très limité. Cependant à la saisie sur ordinateur ou téléphone, souvent on entre la phonétique sans le ton (et le moteur de saisie se charge des ambigüités, en classant les propositions par fréquence, et en s'aidant des mots tapés avant). Cela a donc le fort désavantage de ne pas demander la connaissance du ton, ce qui fait que l'on peut parler sur Skype/mails de manière quasi parfaite, tout en étant incompréhensible a l'oral.

Caractéristique de ibus-pinyintone , différence avec les moteurs habituels

Ici il faut donc taper obligatoirement le ton

On peut taper "n3h3" ou "ni3hao3" pour avoir 你好, mais le nombre (c.a.d le ton) doit être présent. Cela demande donc un poil plus de frappes, mais cela est compensé par le fait qu'ainsi le nombre d'homonynes est très très fortement réduit et réduit le nombre de sélections manuelles que l'on a à faire avec les touches multidirectionnelles

Le prochain objectif est d'ajouter la prédiction du mot suivant, par exemple si je tape "je mange une" , que le moteur propose directement "pomme" "poire" "pizza" (ce que ne propose pas ibus-pinyin par exemple, et encore une fois, ce qui avec l'aide des tons, permettrait de rendre la prédiction plus efficace)

Demande d'aide: comment créer un paquet Debian de tout cela

Voila j'arrive à la toute fin, et le principal but de mon journal (je vous ai bien eu, en fait je voulais juste de l'aide, mais je ne voulais pas poster dans la catégorie forum) j'aimerai avoir un peu d'aide pour packager mon moteur et ma lib.

J'ai commencé à lire le guide pour packager sous debian mais voir que faire un package pour une lib est mis dans la catégorie "tâches" difficiles, et que j'avoue être un peu flemmard, si une bonne âme se sent de m'aider, j'en serais très reconnaissant.

Vers l'infi et l'au delà

A l'avenir je vais essayer de rapidement porter de nouveau les moteurs ibus que j'avais écrit il y a très longtemps pour l'anglais et le français (base sur une intégration d'aspell dans ibus), de manière à pouvoir taper les accents sur mon qwerty sans encombre et éviter les fautes de dyslexie du clavier que je fais souvent.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

