

Journal TaackScheduler : Planificateur de tâches en Groovy

Posté par taack le 18 novembre 2018 à 17:57.
Licence CC By‑SA.

Étiquettes :

	groovy

	closure

	jobscheduler

[image:]

Sommaire

	
Présentation
	Pros:

	Cons:

	
Utilisation:
	Exemple:

	Exemple de gestion d'erreur

	Exécution

	Notes sur les améliorations futures

Bonjour *,

un peu de pub pour mon premier logiciel Open Source :

Présentation

TaackScheduler est un planificateur de tâches utilisant les closures groovy pour décrire le référentiel de données (tâches, flow d'exécution, et machines) des travaux à exécuter. Il peut être intégré facilement aux lanceurs de services natifs de nos OS préférés (SystemD, cron, init …), ou a d'autres applications (natives ou Java).

Il requiert java, ssh et bash.

Pros:

	Construit avec gradle en configuration multi-projet, facilement réutilisable

	Support par les IDE de la complétion et détection des erreurs à la frappe

	Compilation statique et analyse statique lors du développement

	Contrôle fin du flux de l'exécution

	Fichier unique pour toutes les entités, permettant d'avoir une vue global rapidement

	Pas de dépendances entre les tâches, le flux d'exécution est facile à prévoir

	Requiert seulement ssh, bash et Java

	Pas de base de données en backend, le code et des sorties peuvent être versionnés avec n'importe quel SCM

Cons:

	Requiert des compétences en développement pour la gestion des erreurs

	pas de dépendances entre les tâches implique que le flux d'exécution n'est pas optimal

	Requière un IDE supportant l'annotation groovy @DelegatesTo

Utilisation:

Créer un projet gradle ajoutant la dépendance taack-scheduler-library (voir le sous projet taack-scheduler-sample, le dupliquer et adapter le fichier gradle).

Définir une classe qui implémente taackScheduller.Job.

Appeler execute() sur l'instance de la classes précédente.

Exemple:

 @Override
 Closure defineJob() {
 Machine ovh = new Machine()
 ovh.with {
 hostname = "xx.xx.xx.xx"
 login = "tartampion"
 port = 1234
 }

 // Intel nuc Shanghai server
 Machine nuccn = new Machine()
 nuccn.with {
 hostname = "localhost"
 login = "xxx"
 port = 55050
 reverseSshServer = ovh
 }
 //[. . .]
 setJob {
 def t1 = addTask {
 addDistantProcess([nuccn: nuccn,
 nucus: nucus,
 nucde: nucde], {
 addCommand "uptime"
 })

 exitOnError()

 addLocalProcess {
 addCommand """
 ls
 echo toto
 exit 1
 """
 }

 addLocalProcess {
 addCommand getClass().getResourceAsStream("/ls.sh")
 addCommand new File("someFile")
 }
 }

 setExecutionPath {
 executeParallel([tFirst: t1])
 }
 }
 }

Notes:

	Supporte les 'reverse ssh tunnel'

	Les maps sont utilisées pour les noms de tâches et de machines, la clé de la map est utilisée pour le nommage des fichiers contenant stdout et stderr. Les commandes n'ont pas de nom, les fichiers sont suffixés avec un timestamp.

	
addDistantProcess exécute les commandes séquentiellement sur des machines distantes en même temps (parallèlement)

	
addCommand les commandes sont exécutées séquentiellement

	l'exécution commence à l'appel executeParallel. Le job attend l'achèvement de toutes les tâches

	ici, les sorties des commandes (stdout et stderr) sont stockées dans les fichiers tFirst/nuc* pour les processes distant, et dans tFirst/local-* pour les processes locaux

	on peut utiliser les ressources (répertoire resources) pour les scripts, le sql et autres pour profiter du SCM et de l'IDE. Les fichiers ressources sont packagés avec le jar du binaire.

	
exitOnError sort de la tâche courante, mais le job continue

Exemple de gestion d'erreur

 // [. . .]
 setExecutionPath {
 Map<String, Task> res = executeParallel([tFirst: t1])
 Task tFirst = res['tFirst']
 List<CommandResult> nucdeResults = tFirst?.commandResults('nucde')
 if (nucdeResults.first().retCode != 0) {
 println "problem executing uptime on nucde"
 } else {
 println "no problem on nucde"
 // executeParallel([t2: t1])
 }
 List<CommandResult> localResult = tFirst?.commandResults()
 List<File> totoOutput = localResult*.out*.fileOutput.findAll { File content -> content.text ==~ /(?sm).*toto.*/ }
 if (totoOutput*.text)
 println "echo toto OK"
 }

On peut utiliser les codes de sortie des commandes, ou le contenu des sorties stderr ou stdout, et un peu de code pour gérer le flux d'exécution.

Exécution

Utiliser soit ./gradlew run ou, si vous voulez créer un binaire distribuable ./gradlew assembleDist puis cd build/distributions (exécution plus rapide du binaire distribuable)

Pour les utilisateurs d'Intellij, il faut ouvrir ce projet comme un projet Gradle. La version communautaire sera suffisante, avec quelques plugins pour la complétion du SQL, du Bash ou l'édition de CSV.

Notes sur les améliorations futures

LA RAM consommée est d'environ 100 MB pour SampleApp. En utilisant l'approche modulaire de Java 9 on devrait pouvoir réduire fortement cette consommation. Pour le moment la plupart des distributions sont livrées avec Java 8 et 100 MB, on peut vivre avec.

Il y a un sleep de 3 secondes pour initialiser chaque reverse ssh tunnel. Il faudrait l'éviter, mais je ne sais pas comment faire simplement. Par contre, l'initialisation des tunnels n'est faite qu'une fois, on réutilise le même reverse ssh tunnel jusqu'à la fin du job.

Le projet

Merci, bonne soirée.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

