

Journal Systemd, Docker, NetworkD, EtcD, FleetCTL | CoreOS :  Le Cloud n'est pas un Fog .


Posté par bubar🦥 le 26 février 2014 à 20:11.
Licence CC By‑SA.

Étiquettes :

	cloud

	coreos

	docker











[image: ]



C'est bon, avec un titre comme ça, j'ai votre attention ? :p Prenons les noms les plus trollogènes du moment, mettons les ensemble dans un shaker, rajoutons quelques noms moins connus, secouons bien fort, et nous obtenons un délicieux cocktail : CoreOS. Il était temps de parler en quelques mots de CoreOS, en prenant soin cependant de laisser de côté un ton académique pour laisser de la place à un peu d'humour et de bullshit. Restera au lecteur à allez voir -et tester- par lui même de quoi il en retourne. Parceque l'avenir de linux est là. (hoo, un coincoin)


CoreOS, kézako ?
Linux for Massive Server Deployments
CoreOS enables warehouse-scale computing on top of a minimal, modern operating system

Il s'agit d'un projet de système minimaliste, sur lequel on greffe des containers applicatifs indépendants et sécurisés.


Prenez donc tout ces mots-clefs, ajoutez y "Vagrant, Amazon, VMWare, OpenStack, Facebook, Google, ChromiumOS & Gentoo" et vous obtenez une grille gagnante au bingo-réunion de la semaine.


Les bonnes idées venues d'ailleurs :


Partitions système à états :

Pourquoi ChromiumOS ? Parceque CoreOS en reprend une fonctionnalité essentielle : celle de la double partition / système : architecture dans laquelle une partition "froide" reçoit les mises à jour, et lors du reboot elle devient "partition chaude". Si cela se passe mal, un reboot automagique est opéré sur l'ancienne partition n'ayant pas reçue de mises à jour. Ceci de manière transparente. On parle de "partition statefull"


Mise à jour système en unique unité :

Plus de gestionnaires de paquets, on met à jour le système d'un seul trait. Cela réduit l'activité disque, permettant un contrôle plus fin au sein d'un cgroup spécifique afin que cette activité disque n'impacte nullement le service rendu, pendant l'écriture de la mise à jour du système. Bien sûr on perd là toute l'atomisation possible que nous permettent nos fantastiques gestionnaires de paquets, quels qu'ils soient : pour une mise à jour de sécurité sur une bibliothèque système, on se voit obligé d'écrire la totalité du RootFS. Mais ça se pèse, surtout pour un système ultra-minimal. On parle de "Omaha" 


Contraindre toutes les applications à être autonomes :

Toutes les applications installées, bureau y compris, seront contraintes dans un container dédié à chacune d'elle. Elles ne verront que leurs propres arborescence, et la gestion sécuritaire en sera grandement facilité. Nous aurons donc la facilité de l'obsolète dossier "program files" de Windows, tout en ayant le meilleur des possibilités de Linux. L'application codée de la pire manière qui soit, ou pire encore, une belle application mais empaquetée par des échappés d'un asile, ne pourront plus pourrir votre système. Le second gain est la facilité de déplacement des applications d'un système à un autre. Le _workflow" dev->qual->prod ne se fera plus que sur les contraintes de l'application elle même. On parle maintenant de "Docker" et encore de "Omaha"


Configurations distribuées et Gestion Centralisée :

Exit la complexité de maintenance des bons vieux outils que nous connaissons tous, que cela soit pour un cluster de calcul ou un cluster de services, même la plus belle possible genre à ré-installation automatique après surveillance défaillance d'un noeud, sa sortie automatique du cluster. Et bonjour le service de gestion centralisée avec une api JSON… On parle là "d'etcD" Mais aussi de "FleetCTL" 


Simplicité, rapidité

Un des objectifs de CoreOS est un boot en moins de deux secondes. Lorsqu'on sait utiliser kexec, et que l'on sait les 4 minutes chrono en main pour l'initialisation des "bios" modernes de certains serveurs, on rêve d'avoir un reboot qui devienne transparent pour les usagers… aussi transparent qu'un mini lag d'un chargement de page web… Et bien CoreOS propose mieux puisqu'il est simplissime de déménager à chaud une instance d'un container d'un système à un autre, de rebooter une machine sans passer par les phases "bios", et d'être assuré d'un boot sans encombre avec la sécurité de la double partition système. Une intervention en cas de problème se fera sans arrêt de service. Ceci n'est pas option payante et chère (suivez mon regard) qui en plus marche mal. Non : ça fonctionne, c'est libre et c'est inclu. Ces techniques ne sont pas nouvelles en soi, elles sont déjà à l'usage chez les grands noms tel que VmWare, Amazon et Google. Mais elles sont ici disponibles librement, comme dans « Logiciels Libres » ;-)


Conclusion

J'ai écris ce journal en mode bullshit (sans notion de qualité pour présenter ce projet), mais ne loupez pas CoreOS. Allez y, lisez leurs docs, testez, amusez vous. Le seul point à vraiment relevé : il y a des mises à jour plus rapide si l'on souscrit un abonnement. Car CoreOS est aussi un projet commercial, pas seulement un magnifique bac-à-sable pour voir les évolutions en avance de phase et profiter du meilleur de notre noyau favori.


Pour tester, on a le choix :



	Amazon EC2 

	Google Compute Engine 

	Rackspace Cloud 

	Brightbox Cloud

	Eucalyptus 

	Libvirt 

	OpenStack 

	QEMU 

	Vagrant 

	VMware


Et bien sûr, une installation en dur sur son laptop ;-) avec un choix en "readonly + ram" ou en "double partition".


CoreOS

(une dizaine de pages qui, une fois lues, mettrons l'eau à la bouche de tout les geeks et nerds du coin, coin)




EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

