

Journal C11, listes variantes et le turfu

Posté par Tarnyko (site web personnel) le 13 mai 2024 à 14:06.
Licence CC By‑SA.

Étiquettes :

	langage_c

	langage_de_programmation

[image:]

Salut' nal,

Dans la foulée, pas immédiate, des excellents articles de pulkomandy sur les évolutions du langage C, j'ai décidé de m'intéresser à… C11.

Oui seulement lui ; car ça fait peut-être déjà 12 ans, mais l'adoption du truc reste relativement récente…

En tant que développeur C++, revenir aux "bases" m'a fait du bien. Pas de références universelles à transmettre à travers des couches de templates, pas d'instanciation de générique avec un type privé, pas de surcharge-surprise des opérateurs…

([gueule]et pis j'ai récemment eu des échos des cours de C à l'univ et là… franchement ! On leur explique ni la pile ni le tas, "faisez des tableaux[1024] et ça passera", "_Tu utilises le "bool" de stdbool.h> ? C'est pas un peu trop récent ?"… RHaahaaaaa! Ça sent un mélange de condescendance et de naphtaline toussa… 🤬[/gueule])

Je te propose donc un petit composant, pas optimisé mais cependant fonctionnel et normalement thread-safe :

variant_list

c'est-à-dire une liste dynamique d'éléments hétérogènes, qui supporte : les Entiers, Booléens, Flottants et Chaînes.

L'intérêt est surtout qu'il démontre pas moins de 5 features du C11 ! Les voici :

1. macros _Generic

La principale innovation ! Ce code :

#define list_add(L, V) _Generic((V), \
 int: list_add_int, \
 bool: list_add_bool, \
 double: list_add_float, \
 char*: list_add_string)(L, V)

nous permet d'écrire :

list_add(l, 42); // entier
list_add(l, true); // booléen
list_add(l, 3.14); // flottant
list_add(l, "Toto"); // chaîne

un début -même timide- de polymorphisme en C, et ça régale !

2. Threads cross-platform

C'est quand même bien d'avoir des threads utilisables sur tous les OS…

#include "<threads.h>

typedef struct
{
 ...
 mtx_t locked; // C11
}

mtx_init(&l->locked, mtx_recursive | mtx_timed);
mtx_lock(&list->locked);
 ...
mtx_unlock(&list->locked);

3. struct timespec

Alors ça c'est lié, même si ça paraît n'être qu'un type "temps" de plus. En fait ça permet de faire ça :

struct timespec ts; // C11
timespec_get(&ts, TIME_UTC); // heure actuelle...
ts.tv_sec += 1; // ... + 1 seconde

mtx_timedlock(&list->locked, &ts); // attend 1 seconde si c'est occupé !

et a sûrement été ajouté à la norme pour cette raison précise.

4. structs/unions anonymes

C'est une facilité qui permet de s'adresser directement au "contenu" des structs/unions à travers une hiérarchie, à conditions qu'elles n'aient pas de nom propre :

struct Value
{
 union { int i; bool b; double f; char* s; }; // C11: anonyme
 ...

struct Value v;
v->i = 42; // comme si "i" était directement dans "v"

et dans notre contexte de "variant", on s'en sert bien sûr à mort 😉.

5. _Static_assert()

Du code C de test à la compilation ! Tant que les valeurs sont éligibles au static const :

_Static_assert(sizeof(NULL) == sizeof(void(*)()), "NULL n'est pas un pointeur, allô ?");

annonciation du futur "nullptr" de C23, nous sert notamment à vérifier le terrain pour la future surcharge:

 double: list_get_float, \
 char*: list_get_string, \
 void*: list_get_Type)(L, V) // à faire !

qui nous permettra d'obtenir des infos sur les éléments sans variable ni réinventer la roue.

(C23 renomme en "static_assert()" et aura aussi "constexpr" qui permettra bien d'autres choses)

Voilatou !

Okazou, j'ai également fait une version bibliothèque du composant.

Je pense éventuellement le faire évoluer pour rajouter ce dont j'ai parlé ci-dessus, ainsi que les quantités d'arguments variables ("varargs") :

list_add(l, 42, true, 3.14, "Toto"); // autant d'arguments qu'on veut !

et peut-être même, un jour, de l'optimisation…

… sortie de la prod' où tout est plus rapide mais plus laid 😉 .

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars435060000avatar.png

