

Journal Et Dieu inventa le soutien gorge !

Posté par Etienne Bagnoud (site web personnel) le 17 août 2012 à 17:23.
Licence CC By‑SA.

Étiquettes :

	c

	pointeur

	sexiste

[image:]

Le C est connu pour ses pointeurs. Les pointeurs sont une merveille pour certains, une horreur pour d'autre. Je sais qu'il s'agit d'un nième débat religieux par ici, mais parlons de C et de pointeurs !

Un vrai moment de détente pour le week-end :D

Le noyau Linux utilise une forme particulière de listes chaînées qui nous permet d'apprécier ce genre de code include/linux/kernel.h:683:

#define container_of(ptr, type, member) ({ \
 const typeof(((type *)0)->member) *__mptr = (ptr); \
 (type *)((char *)__mptr - offsetof(type,member));})

Et quand mon apprenti tombe sur ce genre de truc, je me dois de lui expliquer.

Pour ceux qui se posent la question, ce petit code permet de trouver l'adresse d'une structure à l'aide de l'adresse d'un membre de la structure.

Imaginons la structure suivante :

struct x {
 int a;
 int b;
};

struct x X;

Et admettons :

	X est à l'adresse 0x14C4

	X.a est à l'adresse 0x14C8

	X.b est à l'adresse 0x14CC

Donc, si ma structure X était à l'adresse 0x0000, nous aurions :

	X.a à l'adresse 0x0004

	X.b à l'adresse 0x0008

Donc si j'ai l'adresse de X.a, j'ai l'adresse de X, car :

&X == &(X.a) - ((struct x *)0)->a;

Tout ceci est bien connu et est disponible dans stddef.h à l'aide de la macro offsetof :

#include <stddef.h>

offsetof(struct x, a);

Tous ces éléments mis ensemble nous permettent d'obtenir des structures de données un peu différentes :

struct s_list {
 struct s_list * next;
 struct s_list * previous;
};

struct s_structure_x {
 /* membres */
 struct s_list list;
};

En lieu et place de :

struct s_structure_x {
 /* membres */
 struct s_structure_x * next;
 struct s_structure_x * previous;
};

ou encore :

struct s_list {
 void * data;
 size_t length;
 int type;
 struct s_list * next;
 struct s_list * previous;
};

et variantes.

Voilà, je suis pas certain d'être clair, mais je fais vite car ce n'est pas le sujet. En expliquant ce sujet, une idée m'est venue (et ça c'est tout l'intérêt de former des jeunes) pour mon projet actuel. Dans les grandes lignes, le projet est de faire communiquer des appareils entre eux.

Afin de faire ça proprement, j'ai, bien entendu, défini quelques couches, 3 en l'occurrence et chacune encapsule l'autre. Un couche réseau, une couche application et une couche donnée.

Dans la réflexion, le fait de travailler sur des micro-contrôleurs n'ayant que 512 octets de mémoires RAM et que la quantité de données transmises peut atteindre 150 octets, plus quelques 10 octets pour les couches, un encodage des données qui ajoutent une 20aine d'octets (1 bit perdu par octet transmis) et quelques variables d'état, l'utilisation de mémoire tampon pour le réseau est à proscrire ; on arrive presque à la moitié de la RAM juste pour les communications (dont la majeure partie n'est que ce qui se trouve déjà en mémoire mais sous une autre forme).

Le code réseau est donc prévu pour travailler en flux. Les données sont transformées et transmises à mesure. Quelques variables d'états plus tard, le réseau ne coûte qu'une ou deux dizaines d'octets en mémoire.

Le problème vient de l'enchaînement des couches dans le code, par exemple :

void hw_send(/* ... */) {
 /* ... */
 l1_send();
 /* ... */
}
void l1_send(/* ... */) {
 /* ... */
 l2_send();
 /* ... */
}
/* ... */

Ça marche, mais si je veux, par exemple, ajouter un traitement (chiffrement ?) entre la couche 1 et 2, le code doit être modifié de manière dramatique. Ou si je veux réutiliser la couche 2 dans une couche 1bis. Non ce qu'il me faut, c'est une sorte de liste chaînée qui traversent les couches et qui me permettent, le cas échéant, d'intercaler un traitement particulier.

Et du noyau vint la solution qui me semble, pour l'instant, la plus intéressante (on verra si ça tient jusqu'à lundi (dans mon esprit (dégénéré))). J'ai fais un petit test et ça donne ça :

#include <stdio.h>
#include <string.h>
#include <stddef.h>

/* Structure pour mes fonctions de communications
 *
 * send et receive reçoivent en premier paramètre une variable
 * (ComFunctions *). Le deuxième paramètre de send est une variable d'état,
 * quand elle est à 0xFF, il n'y a plus rien à envoyer. Pour receive, il
 * s'agit de l'octet reçu par le réseau.
 * send retourne l'octet à transmettre et receive l'état qui, une fois à
 * 0xFF indique qu'il n'y a plus rien à recevoir.
 * La variable lower contient l'adresse de la couche en-dessous de l'actuelle.
 */
typedef struct s_com_funcs ComFunctions;
struct s_com_funcs {
 ComFunctions * lower;
 unsigned char (*send)(void *, unsigned char *);
 unsigned char (*receive)(void *, unsigned char);
};

/* Mes structures avec les valeurs nécessaires pour chaque couche ainsi
 * qu'une instance de ComFunctions.
 */
struct l1 {
 unsigned char val1;
 unsigned char val2;
 unsigned char val3;
 unsigned char state;
 ComFunctions f;
};

struct l2 {
 unsigned char val1;
 unsigned char val2;
 unsigned char state;
 ComFunctions f;
};

/* La fonction send. En paramètre, nous avons la couche la plus haute,
 * retourne 0 quand la transmission est terminée (pour permettre de faire
 * while(send(...));)
 */
char send(ComFunctions * highest)
{
 unsigned char res=0x00;
 printf("0x%02X ", highest->send(highest, &res));
 if(res==0xFF) {
 printf("\n");
 return 0;
 }
 return 1;
}

/* Des init bidons, juste pour le test */
void init_l2(struct l2 * me) { me->val1='Z'; me->val2='F'; me->state=0x00; }
void init_l1(struct l1 * me) { me->val1='a'; me->val2='b'; me->val3='c';
 me->state=0x00; }

/* Des fonctions send, juste un aperçu, mais le code est trivial */
unsigned char send_l2(void * com_funcs, unsigned char * state)
{
 struct l2 * me=(struct l2 *)((com_funcs)-offsetof(struct l2, f));
 /* ... */
}
unsigned char send_l1(void * com_funcs, unsigned char * state)
{
 struct l1 * me=(struct l1 *)((com_funcs)-offsetof(struct l1, f));
 unsigned char lower_state=0x00, tmp=0x00;

 switch(me->state) {
 /* ... plein de code ... */
 case 2:
 tmp='!';
 if(me->f.lower==NULL) {
 me->state++;
 } else {
 tmp=me->f.lower->send(me->f.lower, &lower_state);
 if(lower_state==0xFF) me->state++;
 }
 *state=me->state;
 return tmp;
 /* ... encore plein de code ... */
}

/* Une fonction main */
int main(int argc, char ** argv)
{
 /* Que deux couches, trop flemmard pour la troisième ^^ */
 struct l1 x;
 struct l2 y;

 init_l1(&x);
 init_l2(&y);

 x.f.lower=&(y.f);
 x.f.send=send_l1;
 y.f.lower=NULL;
 y.f.send=send_l2;

 while(send(&(x.f)));

 return 0;
}

Donc le fonctionnement est très simple, chaque couche peut appeler la couche sous-jacente et traiter son résultat avant de l'intégrer dans sa propre sortie. Ça permet d'intégrer des filtres entre les couches (j'ai testé avec un chiffrement fort (xor :-p), c'est démentiel).

Rien de bien révolutionnaire (déjà je travail pas chez Apple, c'est donc mal parti) et certainement déjà utilisé dans bien des projets, mais je cherchais juste une excuse pour faire un journal sur les pointeurs C (et les pointeurs de fonctions). Et ça fait jamais de mal de revoir un peu de C :)

Ah ! et je voulais aussi que ça ce sache : j'aime quand ça pointe !

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

