

Journal Parlons C, parlons pipe !

Posté par Etienne Bagnoud (site web personnel) le 21 août 2012 à 14:08.
Licence CC By‑SA.

Étiquettes :

	c

	tube

	sexiste

	sexisme

	programmation

	fifo

	pipe

[image:]

Mon livre de chevet, Unleashed C (non je mens, mon livre de chevet reste Playboy, mais ça fait moins sérieux), propose d'implémenter une FIFO (ou "pipe", pour tube en anglais) de la façon suivante (approximativement, j'ai simplifié la représentation (surtout il y avait QUEUE écrit et je veux pas de problèmes)) :

+----------+
| taille |
+----------+
| debut |-------+
+----------+ |
| fin | |
+----------+ V
 | +---+---------+
 | | s | donnes |
 | +---+---------+
 | |
 | V
 | +---+---------+
 +------------->| s | donnes |
 +---+---------+
 |
 V
 NULL

Avec, bien entendu, plein de code C manipulant des pointeurs (que j'aime :D).

Moi je veux une petite FIFO. Une pouvant contenir 4 caractères (voir 8) ; la version du livre est un peu gore dans ce cas.

Une FIFO, on pousse à droite, ça sort à gauche. On pousse à droite … ça me rappelle un opérateur : <<. Je prends une variable, pouvant contenir des valeurs de 4 ou 8 octets, une variable pour compter et j'ai une FIFO. Rudimentaire mais suffisante !

Donc ma FIFO commence sa vie avec une structure :

/* Ne pas déraper, ne pas déraper, ... */
typedef struct s_small_dick { /* /o\ */
 unsigned char count;
 uint32_t data; /* uint64_t pour 8 caracteres */
} SmallFifo;

Ensuite il faut quelques fonctions pour la faire vivre. D'abord l'initialisation (pour la forme) :

void sf_init(SmallFifo * f)
{
 if(f==NULL) return;
 f->count=0;
 f->data=0;
 return;
}

Ensuite je veux pouvoir ajouter des valeurs. Cette opération est d'une simplicité déconcertante.

void sf_push(SmallFifo * f, unsigned char b)
{
 if(f==NULL) return;
 /* C'est une FIFO qui, si elle est pleine, éliminent les valeurs les plus
 * anciennes (pas conseillé pour la retraite ^^).
 */
 f->data=(f->data<<8)|b;
 if(f->count<sizeof(f->data)) f->count++;
}

Pour récupérer les valeurs, nous allons, très simplement, appliquer la méthode suivante :

unsigned char sf_pop(SmallFifo * f)
{
 if(f==NULL) return 0x00;
 /* Pas tomber trop bas */
 if(f->count>0) f->count--;
 return (unsigned char)(f->data>>(8 * f->count)) & 0xFF;
}

Et, pour la forme, une fonction qui retourne une valeur différente de 0 s'il y a encore des données dans notre FIFO :

unsigned char sf_has_data(SmallFifo * f)
{
 if(f==NULL) return 0x00;
 if(f->count>0) return 0xEB; /* mes initiales \o/ */
 return 0x00;
}

Bien entendu, ce code n'a été que brièvement testé et contient, peut-être, des erreurs.

int main(int argc, char ** argv)
{
 SmallFifo ma_fifo;
 char des_valeurs[]="abcdefghijklmnopqrstuvwxyz";
 int i=0; /* un compteur */

 sf_init(&ma_fifo);

 for(i=0;i<4;i++) {
 sf_push(&ma_fifo, des_valeurs[i]);
 }
 while(sf_has_data(&ma_fifo)) {
 printf("%c ", sf_pop(&ma_fifo));
 }
 printf("\n");

 for(i=0;i<26;i++) {
 sf_push(&ma_fifo, des_valeurs[i]);
 }
 while(sf_has_data(&ma_fifo)) {
 printf("%c ", sf_pop(&ma_fifo));
 }
 printf("\n");

 return 0;
}

Pour tester ce code, n'oubliez pas d'inclure stdint.h ou alors changer le type en unsigned long int, ça devrait faire 4 octets même sur un AVR ou un PIC.

PS: Si, par mégarde, j'ai choqué une femme dans ce journal, j'en suis désolé. Pour me faire pardonner, j'accepterais jusqu'aux châtiments corporels, y compris être tuer et violer tant que ça reste dans cet ordre là (sauf ma copine, halle_berry.jpeg, qui peut le faire dans l'ordre inverse).

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

