

Journal Retour vers le futur !

Posté par Etienne Bagnoud (site web personnel) le 24 avril 2015 à 14:33.
Licence CC By‑SA.

Étiquettes :

	messagepack

	programmation

	neovim

	historien

	iso

	asn1

	ber

[image:]

L'autre jour, je découvrais, via la dépêche sur neovim, un format « comme JSON mais rapide et petit » : MessagePack.

Sérialiser des données est le fait de coder des données depuis un format applicatif interne à un format utilisé pour les communiquer ou les stocker. De fait, on pourrait préférer sérialiser les données dans un format générique afin de les partager avec un maximum d'applications.

Une méthode qui marche bien pour sérialiser, c'est des séquences TLV, soit Type-Length-Value (ou Tag-Length-Value, c'est selon). L'idée est de mettre un type (ou tag), permettant d'indiquer quelle donnée nous aurons, ensuite sa longueur, afin d'indiquer l'espace nécessaire, puis la donnée.

Le premier avantage, évident, est la possibilité de sélectionner la méthode de traitement ainsi que réserver l'espace nécessaire avant de faire face à la donnée.

Le deuxième avantage est qu'il suffit de documenter, ou standardiser, les types de données afin d'obtenir un format d'échange suffisamment générique pour avoir des applications capables de représenter tous les types de données sans forcément savoir les interpréter.

Le troisième avantage est qu'on peut utiliser n'importe quelle représentation :

Une version pseudo-binaire :
TAG LENGTH VALUE
+--------+--------+---------+
| 0xA0 | 0x05 | HELLO |
+--------+--------+---------+

Une version CSV :
STRING,5,HELLO

Une version XML :
<string length="5">HELLO</string>

Une version JSON :
{ string : { length: 5, value : "HELLO" } }

Avec MessagePack, nous avons une représentation binaire.

Là, mon application peut transmettre des messages entre ses différentes instances. Mais uniquement entre ses instances ; savoir qu'on a une chaîne de 5 caractères « HELLO » est inutile si on ne sait pas l'interpréter.

L'autre information qu'on trouve sur le site de MessagePack, c'est cette image :

[image: { "compact": true, "schema": 0}]

Je comprends cette image comme « Ce qui est cool avec MessagePack, c'est l'absence de schémas » (je lis « "schema": 0 »).

{ "compact": true, "schema": 0}

Ce qui est faux et va être encore plus faux si je crois la section « Future discussion » de la spécification.

Faux car s'il n'y a pas de schéma explicite (sous-entendre « documenté »), le développeur va devoir coder et décoder un message selon un même schéma. Idem si deux applications doivent communiquer.

Encore plus faux car il semble que les développeurs de MessagePack discutent de la possibilité d'introduire des schémas (ou quelque chose de similaire).

En prenant ma machine à voyager dans le temps, j'ai fais un bond dans le passé pour déterrer le future de MessagePack : ASN.1.

D'accord, lire des normes (surtout ISO) c'est plus chiant que de les réinventer. Mais ASN.1 pour le schéma et un encodage BER (Basic Encoding Rules), on arrive à MessagePack avec schémas … et avec moins de limitations (oui avec BER on peut sortir du pur TLV si nos données sont trop longues), avec des cas déjà résolus (deux implémentations compatibles MessagePack pourraient très bien se comprendre sans donner exactement le même résultat à l'encodage ou au décodage. Dès que vous voulez signer vos données, c'est problématique … ASN.1 -> DER), avec des types de données franchement cool, possibilité d'étendre à l'infini (ou presque) et par application, …

Et si vous voulez juste sérialiser vos données sans schéma, faites man ber_printf et man ber_scanf. Vous êtes sur une système de type Microsoft Windows ? C'est aussi présent. Universellement disponible depuis longtemps.

Ce n'est pas le premier projet qui me fais me dire qu'il manque des cours d'histoire et culture générale de l'informatique dans les formations. Et je n'ai pas l'impression qu'historien spécialisé en informatique existe …

PS: Il n'y a rien de « comme JSON » dans MessagePack, c'est juste un schéma faisable avec MessagePack et BER … Ensuite :

BER

BerElement * Message = NULL;

Message = ber_alloc_t(0); /* ou LBER_USE_DER si on veut utiliser DER */
if(Message != NULL) {
 ber_printf(Message, "{oboi}", "compact", 1, "schema", 0);
}

MessagePack (adapté d'un exemple de la documentation)

msgpack_sbuffer sbuf;
msgpack_packer pk;

/* msgpack::sbuffer is a simple buffer implementation. */
msgpack_sbuffer_init(&sbuf);
/* serialize values into the buffer using msgpack_sbuffer_write callback function. */
msgpack_packer_init(&pk, &sbuf, msgpack_sbuffer_write);

msgpack_pack_map(&pk, 2);
msgpack_pack_str(&pk, 7);
msgpack_pack_str_body(&pk, "compact", 7);
msgpack_pack_true(&pk);
msgpack_pack_str(&pk, 6);
msgpack_pack_str_body(&pk, "schema", 6);
msgpack_pack_int(&pk, 0);

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/07461db2c727f1c601fe058a021f413c51e0704bc1296d731124928c.png
JSON 27 bytes

{ “compact”: true, “schema”: 0}

MessagePack 18 bytes

82| |A7| compact |C3| |A6| schema |00

7-byte string 6-byte string

2-element map true integer 0

