

Journal Mesa, Gallium et D3D10/11 sont dans un bateau

Posté par monde_de_merde le 21 septembre 2010 à 01:35.

Étiquettes :
aucune

[image:]

	
Cher journal,

Je prend la plume ce soir pour te raconter un peu ma vie parce je m'ennuie et que mademoiselle elle est au travail et que je reste réveiller pour aller la chercher. Peut être que je n'arriverai pas au bout de ma prose parce qu'il sera trop tard mais qu'importe.

Tu t'es peut être rendu compte que je suis assidument l'actualité de la pile graphique de mon OS préféré, celui depuis lequel je t'écris actuellement. En particulier, je suis inscrit à la liste de diffusion mesa/dev. Cela me fait beacoup de chose à lire et je n'en comprend pas le quart. Les "loop unfolding" et autre optimisations du compilateur en "mesa intermediate representation" c'est un peu technique pour moi.

Je suis triste parce que je n'arrive pas à trouver un morceau de code dans lequel me plonger pour comprendre les choses. Je n'ai pas de vu d'ensemble et c'est quand un peu du trop haut niveau pour moi. Alors je vais essayer de les aider en m'y prenant autrement.

Ce soir, il y a 5 minutes en fait, nous avons reçut de la part de Luca Barbieri, un developpeur a poster un message sur la liste de diffusion annonçant la disponibilité immédiate de la branche d3d1x qui contient un state-tracker pour gallium qui implémente les API D3D10 et D3D11 (glossaire à la fin du journal).

[Je vais chercher mademoiselle, je reviens, de toute façon personne s'intéresse à ces trucs là ici on va pas me piquer mon sujet et j'ai envi de finir quand même.]

...

[30 minutes plus tard]

Luca, donc, a implémenté une partie de l'api D3D version 11 au dessus de Gallium. Seule la partie que peut supporter gallium est actuellement en place et à priori seul swrast (le software rasterizer) est capable d'exécuter les démos qui vont bien.

C'est une étape assez importante et intéressante, en tout cas je le pense. Pas de vérités générales ici c'est mon journal et j'ai tord souvent, déduisez-en ce que vous voulez mais faites attention aux imprécisions qui le jalonneront sans aucun doute.

Tout d'abord les raisons qu'il donne dans le commit qui inaugure la branche : c'est une sorte de démonstration, une preuve que gallium est quand même suffisamment bien foutu pour supporter de multiple API, même celles qui n'ont vraiment pas été prévu pour lui. De plus on pourrais envisager, en écrivant un driver ad-hoc, de faire exécuter les commandes mesa par flgrx et le pilote Nvidia , et donc de profiter de leur niveau de maturité (en tout cas pour OpenGL). Enfin il explique en gros que l'API D3D10/11 est de bien meilleur niveau que celle d'OpenGL.

La dernière raison de cette implémentation va sans doute en faire bondir plus d'un. En ce qui me concerne, je suis assez d'accord. Lors de mes errances pour trouver un truc à contribuer (ce que je n'ai pas encore fait) j'ai fini, assez fatalement, par essayer de lire un petit bout de spécification d'OpenGL(3 quelque chose). En un mot comme en 100 j'ai cru devenir malade. Par curiosité à l'époque, j'ai parcourt la doc D3D (10.1 à ce moment là). C'était propre et clair, j'ai eu un peu l'impression que j'ai eu quand j'ai découvert Python (les pythoniens me comprendront).

C'est assez triste de devoir l'admettre mais D3D est dans ses versions les plus récentes vraiment mieux et plus facile à utiliser qu'OpenGL. Il y a bien eu une tentative il y a quelques années pour faire la même chose à OpenGL que ce que Microsoft a fait à D3D, tout réécrire depuis 0 et casser la compatibilité ascendante, mais le Khronos groupe a abandonné ça.

Mais je m'égare.

La bonne nouvelle, c'est que cette chose utilisée conjointement avec un Wine un peu adapté devrait permettre de faire tourner les applications exploitant cette API avec Wine, sans avoir à utiliser de couche de compatibilité qui fait appel à mesa, mais plutôt en permettant à l'application winifiée de parler directement au state tracker. Si la partie driver de Gallium suit les performances devraient être pour ainsi dire égales à celle atteignables sur Windows (oui, les jeux).

Alors certes, on peut argumenter que cela reviendrait à encourager l'utilisation de ce machin sur mon OS favoris même pour des application natice. Mais le travail des gens qui bossent sur Mesa3D, Gallium3D et tous ces trucs là c'est pour faire un truc qui marche et qui soit utile à des vrais gens. Et les vrais gens de chez Wine, et ben on dirai que ça va leur rendre service (Wine n'a pas de couche de compatibilité avec D3D11 et celle pour D3D10 est embryonnaire parait-il). Et moi qui ait à cœur l'interopérabilité et l'utilisabilité, je trouve que c'est une bonne chose.

On parle d'utiliser une API dont le modèle de développement est parmi les plus fermés qui soient, et actuellement l'utiliser à son vrai potentiel implique de recourir à des driver propriétaire. Mais compte tenu de la progression, fulgurante ces derniers temps, des pilotes libres, je ne suis pas loin de parier sur une implémentation presque libre (module l'API D3D1x donc) au moins dans un proche avenir pour les carte Intel et Radeon (< r300). Les autres arrivent bien que je ne sache pas trop trop où ils en sont chez nouveau. J'en reparlerai peut être au moment de la sorti de mesa 7.9 d'ici quelques jours si je trouve le temps.

tl,dr : merde à vous ;)

Voilà, j'ai fini. Je vais pouvoir retourner chercher un truc à gratter sur Gallium et surtout trouver du temps pour tester tout ça. Ce coup de projecteur miniature est ma modeste contribution à l'univers graphique autour de Linux et la signification de la reconnaissance pour le travail des développeurs (en plus lire leurs messages sur la liste de diffusion m'occupe dans le bus et le métro, je vais pas me plaindre).

(C'est vraiment long et indigeste, mes excuses !)

Glossaire :

- Mesa3D : implémentation libre d'OpenGL initié il y a déjà un bye.

- Gallium3D : dépoussiérage et remise au goût du jour avec une architecture moderne de la pile 3D.

- State tracker : morceau de Gallium3D qui implémente une API spécifique et permet de générer des commandes en un langage intermédiaire indépendant du matériel sous-jacent, ex: OpenGL, OpenGL ES, OpenVG, ...

- Driver (au sens de Gallium3D) : code qui transforme les appels des state trackers en commandes exécutable par le hardware, ex: r300g, softpipe...

- software rasterizer (swrast) : code qui permet d'exécuter logiciellement les commandes provenant des appels aux state trackers, quand le matériel ne les supportes pas ou ne les implémentes pas.

- fglrx : driver propriétaire ATI.

- D3D10/11 : direct 3D, API dédié à la 3D issue de DirectX. La version 10 est fondamentalement différente de la 9 et casse la compatibilité ascendante avec cette dernière car elle est le fruit d'une réécriture complète. La version 11 est juste une évolution.

- Wine : couche de compatibilité qui vise à permettre l'exécution de binaire Windows sous Linux (entre autre) en transformant les appels aux API spécifiques en leurs équivalents locaux.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

