

Journal envoi d'emails automatisé dans le futur

Posté par unsigned le 05 avril 2013 à 02:29.
Licence CC By‑SA.

Étiquettes :

	script_mail_de_rappel_futur

	debian

[image:]

Sommaire

	
Le problème:

	
Solution:

	
Exemple d'utilisation:

	
Le detail:
	
les formats de moment de rappel acceptes

	
Voici le programme:

Voila, hier et aujourd'hui, n'ayant rien de particulier a faire, j'ai décidé de mettre un oeuvre une idée qui me trottait par la tête depuis quelque temps; Un envoi de rappel dans le futur automatisé par email

Le problème:

J'ai la politique, dans ma boite mail, de tout archiver, et de ne laisser que les mails auxquels je dois répondre, ou les mails qui contiennent des informations pour effectuer des actions en dehors (par exemple des billets d'avion, un mail qui dit "je dois 150€ a tata danielle", etc…)

Quand ma boite est vide, je n'ai rien a faire de spécial!

Problème! Ma boite n'est jamais vide! En effet, les mails du style "je dois 150€ a tata" sont présent, et imaginons que je sais que je vais manger chez elle le 01 juin, comme je ne relis absolument pas régulièrement mes vieux mails, j'oublie totalement les 150€ euros et la tata pas contente

Ou alors gilbert me demande par mail le prix du kilo de savon a marseille, et je ne saurais ce prix que dans 1 semaine, car dans une semaine je vais a marseille pour en acheter, du coup son email traine dans la boite de reception toute la semaine le temps que j'aille a marseille.

Solution:

Et si j'envoyais ce mail a une adresse specifiée, lui disant de me le reenvoyer le 31 mai, la veille du repas chez la tata ! Comme ca je n'oublierais pas les 150€! Et voila je peux archiver le mail "150€ a tata" ma boite de reception est plus propre que propre!

J'en profite pour envoyer le mail que m'a envoyé gilbert a cette meme adresse, en specifiant un reenvoi dans 7 jours, et le tour est joué!

Donc j'ai cree un nouvelle adresse mail sur internet qui m'offre un acces pop et smtp (j'ai fait ça chez yahoo, mais ca devrait marcher n'importe ou, disons que cette adresse est rappel@rappel.fr), et j'ai fait un petit script qui lit les mails de cette adresse, determine quand ce message doit etre reexpedié, le stocke, et reexpedie le mail a la date demandée!

Exemple d'utilisation:

J'envoie un mail a rappel@rappel.fr, avec comme sujet "20 mai; balayer le placard" et dans le corps ce que je vais, et le 20 mai, entre 6 et 7 h du mail, je recevrais un mail de rappel@rappel.fr me disant "balayer le placard" et ce qui etait dans le corps egalement

Le detail:

j'ai fait un script rappels.py, grace a une entree dans le crontab, ce script est executé plusieurs fois par jours (2 suffisent je pense).

Dans ce script est specifié les adresse mail autorisées a utiliser le service de rappel

Ce script agit de la maniere suivante:

-Il telecharge via pop les messages recus sur rappel@rappel.fr

-Parmi les emails, si l'email vient d'une personne autorisée, il verifie si dans le sujet il arrive a lire pour quelle date l'utilisateur veut son rappel

-Si il n'y arrive pas, il envoie un mail a la personne pour lui preciser que ce n'est pas possible

-Si il y arrive, il stocke le mail dans un fichier a part, le moment prevu d'envoi dans un autre fichier, et cree une tache avec at (le programme doit etre installé) pour le moment voulu de l'envoi

-Il supprime tous les email sur le serveur POP

-Finalement, il lit la liste des tous les envois a faire, et realise ceux qui sont prevu dans le passé par SMTP

les formats de moment de rappel acceptes

Le moment ou le rappel doit être fait s’écrit dans le sujet du mail, se termine par un ";", et doit être le la forme suivante; Le mail sera envoyé le jour spécifié entre 6 et 7h du matin

demain; -> demain

1j; -> dans 1 jour, meme heure

21j; -> dans 23 jours, meme heure

1m; -> dans 1 mois, meme heure

25 juin; -> le 25 juin prochain

4 septembre 2015; -> le 4 septembre 2013

Le code est hautement crado, les emails renvoyés ne sont pas identique, et parfois difficiles a lire, ayant eu un peu de mal avec le parsing des mail en python, d'ailleurs n'ayant que des debian squeeze sous la main, je n'ai teste le programme qu'avec python2.6, mais j'ai vu que a partir de python3.2 le parsing des email a ete amelioré.

Voici le programme:

#!/usr/bin/python2.6

adresseAutorisees=["monAdressePerso@perso.fr"]
SMTPserver = 'smtp.mail.yahoo.com'
SMTPsender = 'rappel@example.com'

SMTPUSERNAME = "rappel@example.com"
SMTPPASSWORD = "motdepasse"

POPSERVER='pop.mail.yahoo.com'
POPUSER='rappel'
POPPASS='motdepasse'

import os
from subprocess import Popen

def ex(command):
 print(" on va executer: "+command)
 p = Popen(command, shell=True)
 sts = os.waitpid(p.pid, 0)[1]

class FichierDate:
 def __init__(self,nomFichier,dateEnvoi,sujet):
 self.nomFichier=nomFichier
 self.dateEnvoi=dateEnvoi
 self.sujet=sujet
 def __str__(self):
 return self.nomFichier+" SUJET: "+self.sujet

if not os.path.exists(".rappel"):
 os.makedirs(".rappel")
import shelve
d=shelve.open(".rappel/liste")
def innit(db,key,valeur):
 if key in db:
 return db[key]
 else:
 db[key]=valeur
 return valeur

f=innit(d,"fichierDate",[])

def enregistrerMail(mail,dateEnvoi):
 nomFichier=str(dateEnvoi)+" pour "+str(mail.adresse)
 fi=shelve.open(".rappel/"+nomFichier)
 fi["mail"]=mail
 fi.close()
 fichierDate=d["fichierDate"]
 fichierDate.append(FichierDate(nomFichier,dateEnvoi,mail.sujet))
 d["fichierDate"]=fichierDate

mois=["janvier","fevrier","mars","avril","mai","juin","juillet","aout","septembre","octobre","novembre","decembre"]
moisVersNum={}
for i in range(len(mois)):
 moisVersNum[mois[i]]=i+1
syntax="""
demain; -> demain
1j; -> dans 1 jour, meme heure
21j; -> dans 23 jours, meme heure
1m; -> dans 1 mois, meme heure
25 juin; -> le 25 juin prochain
4 septembre 2015; -> le 4 septembre 2013
"""
def chopeNumeroDevant(st):
 i=0
 while st[i:i+1].isdigit():
 i+=1
 if i==0:
 return None,st
 nb=int(st[0:i])
 st=st[i:]
 return nb,st
from datetime import timedelta,datetime,date
def parseMoment(chaine):
 #print chaine
 avant,sep,apres=chaine.partition(";")
 aujourdhui=datetime.now()
 avant=avant.strip()
 if avant.startswith("demain"):
 return aujourdhui+timedelta(1)
 nbJour,reste=chopeNumeroDevant(avant)
 if nbJour==0:
 return None
 avant=reste.strip()
 numMois=None
 for m in mois:
 if avant.startswith(m):
 numMois=moisVersNum[m]
 avant=avant[len(m):]
 avant=avant.strip()
 if numMois:
 #print avant
 nb,reste=chopeNumeroDevant(avant)
 if nb:
 # print nb
 return datetime(nb,numMois,nbJour,6,aujourdhui.minute,aujourdhui.second)
 else:
 annee=aujourdhui.year
 if aujourdhui.month==numMois:
 if aujourdhui.day<nbJour:
 annee=aujourdhui.year
 elif aujourdhui.day>nbJour:
 annee=aujourdhui.year+1
 else:
 return None
 elif aujourdhui.month>numMois:
 annee=aujourdhui.year+1
 return datetime(annee,numMois,nbJour,6,aujourdhui.minute,aujourdhui.second)
 # c'est pas une date, c'est des jours relatifs
 if avant.startswith("j"):
 return aujourdhui+timedelta(nbJour)
 if avant.startswith("m"):
 return aujourdhui+timedelta(nbJour*30)

class MEMO:
 pass
def Envoyeur(memo):
typical values for text_subtype are plain, html, xml
 text_subtype = 'plain'
 content=b"""\
 Ceci est un rappel comme demande
 """
 subject=memo.sujet
 import sys
 import os
 import re
 from smtplib import SMTP_SSL # this invokes the secure SMTP protocol (port 465, uses SSL)
 from email.mime.text import MIMEText
 from email.mime.base import MIMEBase
 from email.mime.multipart import MIMEMultipart
 from email.message import Message
 msg=MIMEMultipart()
 msg['Subject']= subject
 msg['From'] = SMTPsender # some SMTP servers will do this automatically, not all
 msg['To']=memo.adresse
 msg.preamble=b"hoho"
 texte=memo.body
 kiki=MIMEText(texte,'plain')
 msg.attach(kiki)
att = MIMEBase('application','octet-stream')
att.set_payload(memo.message)
att.add_header('Content-Disposition', 'attachment', filename="mess")

msg.attach(att)

 try:
 conn = SMTP_SSL(SMTPserver,465)
 conn.set_debuglevel(False)
 conn.login(SMTPUSERNAME, SMTPPASSWORD)
print (sender,destination,msg.as_string())
 conn.sendmail(SMTPsender, [memo.adresse], msg.as_string())
 except:
 return False
 finally:
 conn.close()
 return True

import email
import poplib
def extractEmail(chaine):
 deb=chaine.find(b"<")
 fin=chaine.find(b">")
 return chaine[deb+1:fin]
server= poplib.POP3_SSL(POPSERVER)

server.user(POPUSER)
server.pass_(POPPASS)
nbMess,size=server.stat()
print (nbMess)
memos=[]
for i in range(nbMess):
 memo=MEMO()
 reponse,lines,octets=server.retr(i+1)
 print(reponse,"HIHI",octets)
 adOk=False
 suOk=False
 for l in lines:
 if not suOk and l.startswith(b"Subject:"):
 memo.sujet=l[9:]
 suOk=True
 print(l[9:])
 if not adOk and l.startswith(b"From:"):
 memo.adresse=extractEmail(l[5:])
 adOk=True
 print(extractEmail(l[5:]))
 print(len(lines))

import email.parser.BytesParser
msg=BytesParser().parsebytes('\n'.join(lines))
 lll=""
 for l in lines:
 ll=l
 lll=lll+'\n'+ll
 msg = email.message_from_string(lll) # new statement
 #print(msg.get_payload())
 memo.body=msg.get_payload()
 memo.body=memo.body[memo.body.find("Content-Transfer")+32:]
 memo.message=lines
 memo.numero=i+1
memo.body=str(lines[len(lines)-1])
print (memo.message)
 memos.append(memo)
 server.dele(i+1)
def estAutorise(adresse):
 for a in adresseAutorisees:
 if adresse in adresseAutorisees:
 return True
 return False
for m in memos:
 moment=parseMoment(m.sujet)
 if estAutorise(m.adresse):
 if moment:
 avant,sep,apres=m.sujet.partition(";")
 m.sujet=apres
 enregistrerMail(m,moment)
 date=moment.strftime("%H:%M %m%d%y")
 ex("at -f /home/auberge/rappel.sh "+date)
 else:
 m.sujet="Nous pas pu identifier le moment du rappel "+m.sujet
 Envoyeur(m)
 else:
 print "ERREUR DESTINATAIRE NON AUTORISE"
 #e=Envoyeur(m)
 #print (m.sujet," POUR ",m.adresse)

def voyonsVoirSiOnPeutEnvoyerDesMails():
 print "voyons voir"
 fichierDate=d["fichierDate"]
 fichierDateASupp=[]
 for f in fichierDate:
 print(f)
 if f.dateEnvoi <= datetime.now():
 print "on doit envoyer un mail "+str(f)
 nomf=".rappel/"+f.nomFichier
 print nomf
 fmail=shelve.open(nomf)
 mail=fmail["mail"]
 if(Envoyeur(mail)):
 os.remove(nomf)
 fichierDateASupp.append(f)
 for f in fichierDateASupp:
 fichierDate.remove(f)
 d["fichierDate"]=fichierDate
voyonsVoirSiOnPeutEnvoyerDesMails()

server.quit()
d.close()

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars660008000avatar.jpg

