

Journal Un premier contact avec le langage Nim

Posté par Vroum le 03 juillet 2019 à 17:26.
Licence CC By‑SA.

Étiquettes :

	nim

	compilation

	langage

	objective-c

[image:]

Au gré de mes pérégrinations sur Github, j'ai trouvé un benchmark de serveur Web qui date un peu mais qui m'a interpelé.

J'avais déjà entendu parlé du langage Nim mais je le classais plutôt comme projet de recherche.

En regardant de plus près, je tombe sur une version 0.20 aboutie et un éco-système déjà très riche.

Nim se décrit comme un langage compilé statiquement typé qui propose également la méta-programmation (macros), un ramasse-miette, le "pattern-matching" fonctionnel et une compilation vers les langages C, C++, Objective-C ou JavaScript.

Le but affiché est d'être aussi rapide que le C, aussi expressif que le python et extensible comme du Lisp. Rien que ça! On est en droit d'être sceptique…

Or le langage a véritablement beaucoup d'attraits et la prise en main est quasi-immédiate surtout pour des personnes familières avec Python. Je vous propose quelques liens à la fin du journal pour parcourir plusieurs exemples de code.

Première évaluation

Mon premier objectif de test était de vouloir comparer bêtement la taille d'un exécutable avec une version de référence en C. Pour ce faire, je pars sur un équivalent classique à la commande /bin/true de GNU Coreutils.

Le code d'exemple ne comprend qu'une seule ligne:

% cat ./true.nim
quit(QuitSuccess)

Compilation

La documentation dédiée à la compilation est très bien écrite et la commande de compilation est immédiate:

 /tmp % nim c true.nim
 Hint: used config file '/etc/nim/nim.cfg' [Conf]
 Hint: system [Processing]
 Hint: widestrs [Processing]
 Hint: io [Processing]
 Hint: true [Processing]
 CC: stdlib_system.nim
 CC: true.nim
 Hint: [Link]
 Hint: operation successful (14111 lines compiled; 0.479 sec total; 16.008MiB peakmem; Debug Build) [SuccessX]

 % ls --human --size ./true /bin/true
 88K ./true 36K /bin/true

Résultat plutôt logique pour un premier jet. Je peux améliorer la taille de l'exécutable final avec quelques options:

 nim c -d:release --newruntime --opt:size true.nim

 % ls --human --size ./true /bin/true
 40K ./true 36K /bin/true

De mieux en mieux… et en regardant de plus près avec strace, je vois que du code utilise une gestion des signaux désactivable avec l'option -d:noSignalHandler. La documentation propose également de désactiver les vérifications "runtime" avec --checks:off. Voyons ce que ça donne:

 nim c --verbosity:2 -d:release --checks:off -d:noSignalHandler --newruntime --opt:size true.nim

 % ls --human --size ./true /bin/true
 % 20K ./true 36K /bin/true

Impressionnant! Nous sommes maintenant arrivés à une taille largement inférieure à ma version de référence.

Mais nous pouvons même faire encore mieux avec un dernier appel à la commande strip…

 % ls --size --human ./true =true
 16K ./true 36K /bin/true

Dernier détail

Cependant un dernier détail me chiffonne avec la sortie de ldd qui fait apparaître la librairie libdl.so.2 dans ma version. J'ai beau chercher avec les options de linkage passL: mais je n'arrive pas à l'éviter.

Il ne me reste plus qu'à reprendre la ligne du compilateur présentée avec le mode verbose et ne pas établir manuellement ce lien:

 % gcc -o /tmp/true .cache/nim/true_r/stdlib_allocators.nim.c.o .cache/nim/true_r/stdlib_system.nim.c.o .cache/nim/true_r/true.nim.c.o

 % ldd ./true
 linux-vdso.so.1 (0x00007fff5918e000)
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007ff1d239e000)
 /lib64/ld-linux-x86-64.so.2 (0x00007ff1d258a000)

Conclusion

Victoire! Mes sorties ldd et strace sont maintenant strictement identiques à la version GNU Coreutils mais j'ai gagné 45% sur mon exécutable final ;-)

Exemples de code Nim

J'ai essayé de classer les sites dans un ordre de progression:

	https://nim-by-example.github.io/

	https://narimiran.github.io/nim-basics/

	https://akehrer.github.io/posts/getting-started-with-nim/

	https://xmonader.github.io/nimdays/

	https://arthurtw.github.io/2015/01/12/quick-comparison-nim-vs-rust.html

	https://howistart.org/posts/nim/1/

Épilogue

La documentation du module system précise que l'appel à quit est implicite. Le fichier source true.nim peut donc être vide pour le même résultat !

De plus, mon exemple est trop simpliste ici mais sachez que vous pouvez utiliser autre chose que gcc très facilement. Par exemple:

 nim c --gcc.exe:musl-gcc --gcc.linkerexe:musl-gcc ...

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

