

Journal Fuzzing : éprouver les entrées de vos développements

Posté par woffer 🐧 (site web personnel) le 27 octobre 2015 à 19:16.
Licence CC By‑SA.

Étiquettes :

	fuzzing

	développement

	heartbleed

	shellshock

	lwn

[image:]

Wikipedia donne pour le fuzzing, la définition suivante (https://fr.wikipedia.org/wiki/Fuzzing) :

Le fuzzing (ou test à données aléatoires) est une technique pour tester des logiciels. L'idée est d'injecter des données aléatoires dans les entrées d'un programme. Si le programme échoue (par exemple en plantant ou en générant une erreur), alors il y a des défauts à corriger. Exemples de points d'entrée d'un programme :

- Fichiers

- Périphériques (clavier, souris, etc.)

- Variables d'environnement

- Réseau

- Limitation des ressources (mémoire, disque dur, temps CPU, etc.)

- etc.

Cette définition montre bien, que la difficulté est de bien générer des jeux de données (aléatoires ou semi aléatoire) permettant de mettre à défaut son logiciel.

Jusqu'à récemment, il existait deux catégories d'outils de fuzzing :

	ceux utilisant la force brute

	et ceux partant d'un profil de test bien particulier

Le problème des outils utilisant la force brute est qu'ils ne permettent pas de trouver des cas complexes de crash dans un temps fini.

Le problème des outils utilisant des profils de test est qu'ils nécessitent une connaissance approfondie du logiciel à tester et généralement permettent de ne trouver que les types d'erreurs que l'on souhaite chercher.

[image: AFL]

Comme le montre cet article http://lwn.net/Articles/657959/, depuis septembre 2014 et la découverte du problème Shellshock dans bash (problème existant depuis 25 ans ! avec la livraison de la version 1.03 de bash en 1989), un chercheur en sécurité de chez Google a trouvé un nouvelle stratégie pour effectuer du fuzzing en force brute mais de façon plus efficace.

E il a développé l'outil American Fuzzy Lop (en C), qui a permis de :

	découvrir le Shellshock de bash (une faille de 25 ans),

	découvrir des denial-of-service sur le serveur DNS Bind

	de redécouvrir la célèbre faille Heartbleed sur OpenSSL (attaque réputé complexe et qu'il a trouvé en seulement 6 heures de fuzzing)

	et d'autres

Actuellement, il existe des déclinaisons de cet outil pour les langages suivants :

	Go (https://github.com/dvyukov/go-fuzz) (cf. ci-desous)

	Python (https://bitbucket.org/jwilk/python-afl)

	Rust (https://github.com/frewsxcv/afl.rs)

	GCJ Java(https://gcc.gnu.org/java/)

Ces outils fonctionnent de la façon suivante, ils vont :

	instrumentaliser votre logiciel à tester afin "d'observer ses réactions"

	injecter des trames aléatoires basées sur des corpus utilisés lors de vos tests unitaires par exemple

	s'il détecte une nouveau de chemin d'exécution de votre logiciel, il va enrichir le corpus (initialement composé de vos tests unitaire) et se basé sur cette entrée pour générer de nouvelles trames aléatoires.

	s'il identifie un crash/exception/panic/boucle infinie/fuite mémoire, il trace l'entrée et l'éventuelle stack-trace pour correction ultérieure.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/68cdf3903a9baa16c133de312012e05fc435d92bca693f1826d732e4.png
american fuzzy lop 0.47b (readpng)

process timing

run time : 0 days, O hrs, 4 min, 43 sec
last new path : 0 days, O hrs, 0 min, 26 sec

last unig crash : none seen yet

Tast uniq hang : O days, O hrs, 1 min, 51 sec

overall results
cycles done : 0
total paths : 195
uniq crashes : 0
uniq hangs : 1

cycle progress map coverage

now processing : 38 (19.49%) map density : 1217 (7.43%)

paths timed out : 0 (0.00%) count coverage : 2.55 bits/tuple
stage progress ———— —— findings in depth

now trying : interest 32/8 favored paths : 128 (65.64%)

stage execs 0/9990 (0.00%) new_edges on : 85 (43.59%)

total execs : 654k total crashes : 0 (0 unique)
gxec speed - 2306/sec total hangs : 1 (1 unique)
fuzzing strategy yields

DI 5 88 1k gk, 6/14.ak, 6/14.4Kk
byte flips : 0/1804, 0/1786, 1/1750
arithmetics : 31/126k, 3/45.6k, 1/17.8k
known ints : 1/15.8k, 4/65.8k, 6/78.2k
havoc : 34/254k, 0/0
trim : 2876 B/931 (61.45% gain)

path geometry
Tevels : 3
pending
pend fav
imported
variable
latent :

EPUB/avatars871053000avatar.png

