

Journal Yocto+Docker: Les containers personnalisé

Posté par X@v (site web personnel) le 05 avril 2016 à 23:27.
Licence CC By‑SA.

Étiquettes :

	yocto

	docker

	conteneur

	tutoriel

	fedora

[image:]

Sommaire

	Installons de Yocto

	Générons notre image

	Installons docker

	Créons notre container.

	Démarrons notre image

	Poussons l'exercice encore un peu plus loin…

Bonjour 'nal… c'est comme ça qu'on dit n'est pas?

Vous connaissez certainement Docker, la solution permettant de d'automatiser le déploiement d'application sous forme de containers LXC.

Docker fournit un grand nombre d'images prédéfinies par d'autre mais, question: Comment peut-on faire pour créer notre propre image et la déployer?

Je travail avec Yocto qui est conçu pour créer des images aux petits oignions pour des systèmes embarqués. Pourquoi donc ne pas utiliser cet outil pour fabriquer une image qui sera ensuite utilisée dans un container Docker?

Ce journal est écrit pour faire partager mes expériences prend la forme d'un tutoriel expliquant étape par étape et comment créer et exécuter cette image.

Installons de Yocto

Pour débuter avec Yocto, il suffit de se référer au tutoriel Yocto Project Quick Start mais ne vous inquiétez pas je détail toutes les commandes ci-dessous.

Note: Dans mon exemple, je vais utiliser Fedora Core 23 (qui n'ai pas supporté par Yocto-project mais qui fonctionne).

Pourquoi cette distrib? Tout simplement parce que j'avais envie de tester l'interface Gnome3 et que je l'avais sous la main.

Tout commence donc l'installation des outils nécessaires:

sudo dnf install gawk make wget tar bzip2 gzip python unzip perl patch diffutils diffstat \

git cpp gcc gcc-c++ glibc-devel texinfo chrpath ccache perl-Data-Dumper perl-Text-ParseWords \

perl-Thread-Queue socat findutils which SDL-devel xterm

J'ai dû rajouter un paquet manquant (et oui, on m'avait bien prévenu, FC23 n'est pas supporté…)

sudo dnf install perl-bignum

Ensuite, nous devons récupérer Yocto en lui même, et nous allons l'installer dans ~/yocto:

mkdir ~/yocto

cd ~/yocto

git clone git://git.yoctoproject.org/poky -b jethro

Générons notre image

Avant de créer notre image, nous devons d'abord créer notre environnement.

Les commandes suivantes font le travail:

cd ~/yocto/poky

source oe-init-build-env

Maintenant, nous devons définir notre machine cible. Par défaut Yocto propose d'utiliser qemu, dans notre cas nous allons utiliser une cible identique au futur hôte: genericx86-64

Pour cela éditons le fichier ~/yocto/poky/build/conf/local.conf et dé-commentons la ligne suivante:

MACHINE ?= "genericx86-64"

Nous allons aussi vouloir que notre système de fichier soit produit sous forme d'une archive tar.bz2

Ajoutons à la fin de ce même fichier la ligne suivante:

IMAGE_FSTYPES += "tar.bz2 "

Voilà, notre environnement est prêt, nous pouvons lancer la compilation et partir faire quelque chose d'intéressant pendant que le PC travail (en fonction de la puissance de votre machine, ça peut prendre pas mal de temps):

cd ~/yocto/poky/build

bitbake core-image-minimal

L'image résultant de cette compilation se trouve dans ~/yocto/poky/build/tmp/deploy/genericx86-64/

Installons docker

L'installation et le démarrage de docker se fait en deux lignes:

sudo dnf install docker

sudo service docker start

Créons notre container.

Nous allons maintenant créer l'environnement permettant le déploiement de notre image:

mkdir ~/docker

cd ~/docker

Copions l'image créée précédemment dans notre environnement de déploiement Docker:

cp ~/yocto/poky/build/tmp/deploy/genericx86-64/core-image-minimal-genericx86-64-*.rootfs.tar.bz2 docker-image-minimal-genericx86-64.tar.bz2

Nous devons d'abord créer une description de ce dernier grâce à un fichier Dockerfile

Ce fichier contient les instructions permettant la création de notre container. Voici son contenu:

FROM scratch

ADD docker-image-minimal-genericx86-64.tar.bz2 /

CMD ["sh"]

Petite explication: On part "FROM scratch", on ajoute notre système de fichier docker-image-minimal-genericx86-64.tar.bz2 à la racine \. Notre container démarre avec la commande sh.

Il faut maintenant construire et installer notre container.

sudo docker build -t mycontainer .

Cette commande va lire le fichier Dockerfile que nous venons de créer et va créer un container puis décompresser l'image créée avec Yocto.

Il nous reste plus qu'a vérifier si notre image apparaît dans la liste:

sudo docker images

Démarrons notre image

Notre image est installer, démarrons là:

docker run -it --rm mycontainer

Bingo nous sommes dans notre nouvel environnement.

Poussons l'exercice encore un peu plus loin…

En explorant un peu ce que l'on vient de créer, nous constatons tout de même que nous avons une image un peu grosse (8MB) et surtout que nous avons perdu quand même pas mal de temps à compiler le noyau Linux alors qu'avec Docker, il ne nous sert à rien.

Si nous voulons encore réduire notre image et n'inclure dedans que la minimum (busybox), nous allons devoir créer notre propre image.

Pour cela, nous allons créer notre propre layer et l'ajouter aux layers utilisés dans notre environnement Yocto.

mkdir -p ~/yocto/poky/meta-xb/conf

cp ~/yocto/poky/meta-yocto/conf/layer.conf ~/yocto/poky/meta-xb/conf/

Puis nous allons créer notre image qui ne contiendra que busybox:

mkdir -p ~/yocto/poky/meta-xb/recipes-core/images/

cat > ~/yocto/poky/meta-xb/recipes-core/images/docker-image-minimal.bb << EOF

SUMMARY = "Minimal image for docker guest - Proof of Concept"

IMAGE_FSTYPES += "tar.bz2 "

LICENSE = "CLOSED"

IMAGE_INSTALL = "busybox"

inherit image

EOF

Note: J'ai mis LICENSE = "CLOSED" pour me simplifier la vie et ne pas gérer cet aspect pendant mes expériences mais bien entendu, rien n'est fermé ici

Notre layer est prêt. Pour l'ajouter aux layers utilisés dans notre environement, il faut ajouter la ligne suivante à lafin du fichier ~/yocto/poky/build/conf/bblayer.conf

BBLAYERS += "/home/developper/yocto/poky/meta-xb "

Note: /home/developper correspond à ~

Construisons notre nouvelle image:

cd ~/yocto/poky

source oe-init-build-env

bitbake docker-image-minimal

L'image produite ne fait plus que 2MB (soit 4 fois moins que la précédente … et je pense qu'on peut encore faire mieux)

Il est alors possible de la démarrer dans docker en suivant les instructions décrites un peu plus haut.

A partir de maintenant il possible possible de rajouter des recettes Yocto pour avoir un containers "aux petits oignons"…

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars715059000avatar.png
(13

