

Journal [Trolldi] Le langage plus approprié pour écrire des applications graphiques multiplateformes

Posté par X345 le 25 octobre 2013 à 15:53.
Licence CC By‑SA.

Étiquettes :

	programmation

[image:]

Bonjour Nal,

Je me faisais cette semaine la réflexion que je serais bien en peine si je devais à au jour d'aujourd'hui (oui cette formulation est totalement redondante) choisir un couple langage/bibliothèque pour écrire une application multiplateforme disposant d'une interface graphique. Mais tu auras remarqué, Nal, que je suis bien élevé et que j'ai religieusement attendu trolldi pour te faire part de mes états d’âme.

Prenons l'exemple d'une application effectuant des transferts réseau comme un gestionnaire de téléchargement ou un client bittorrent devant fonctionner sous Linux/Windows/MacOS. Ou d'une application d'édition de documents, un éditeur markdown par exemple.

Je connais les technos suivantes, mais aucune ne me parait vraiment utilisable.

	Il y a tout d'abord le couple C++/Qt. Il est vrai que ce couple permet de faire sans problèmes des interfaces graphiques de très bonne qualité et relativement faciles à porter sur différentes plateformes. Mais honnêtement, coder en C++ c'est compliqué et très error-prone, comme nous l'a si bien montre LiNuCe à travers un lien posté sur la Linuxfr International Tribune : Deep C. Est-ce que je veux vraiment coder dans un langage d'aussi bas niveau, qui me force à gérer la mémoire à la main pour réaliser une interface graphique ?

	Si on je ne veux pas gérer la mémoire à la main et disposer d'un langage de plus haut niveau, on me proposera Java. Mais il faut reconnaître que les interfaces graphiques réalisées avec Swing sont vraiment moins attractives que celles réalisées avec Qt. Il y a bien un binding Java pour Qt, Qt Jambi, mais il est franchement moribond (pas de projets libres majeurs l'utilisent, d'ailleurs le site de Jambi est down à l'heure au j'écris).

D'autre part, bien que la JVM offre d'excellentes performances (Java est bien souvent seulement 20% plus lent que C++, au pire seulement 100% plus lent), elle est tout de même assez lourde en termes d'occupation mémoire et de temps de chargement en mémoire. Un runtime plus léger serait franchement appréciable.

	On pourra alors me proposer Python et PyQt (ou PySide). Ce couple peut paraitre excellent à première vue : les bindings Python pour Qt sont maintenus et documentés, Python est langage de haut niveau, le runtime est relativement léger. Mais voilà, il faut bien reconnaître que Python est lent, très lent. Là où Java est 2 fois plus lent que C++, Python sera facilement 5 à 10 fois plus lent. On peut certes coder les parties les plus critiques de notre application en C ou utiliser un des choses comme Cython. Mais cette technique nécessite de profiler notre application, écrire des bindings Python/C, adapter le process de compilation de l'application pour utiliser deux langages. Bref, tout ceci complique grandement le développement de notre application.

On pourra aussi ajouter que Python est langage typé dynamiquement et que dans des projets plus importants, un langage typé statiquement est préférable pour détecter un maximum d'erreurs à la compilation. Et tout ceci est sans compter le cauchemar qu'est le packaging et déploiement d'applications Python.

Si on regarde du côté des langages plus récents comme Go, Scala ou Rust, la situation n'est guère plus reluisante. Ils ne proposent rien de vraiment utilisable pour coder des interfaces graphiques.

Et toi, mon journal qu'en penses-tu ?

Est-ce tu penses que je devrais arrêter de me préoccuper de tout ça et coder mes interfaces graphiques en nodejs/HTML5 et communiquer avec mon bancked à travers HTTP WebSocket ?

Est-ce que tu penses que le Windows/Linux/MacOS sont morts et qu'il suffit de maitrîser l'API d'Android ?

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

