

Journal Quelles seraient les meilleures règles de formatage de code ?

Posté par xoddark le 29 novembre 2021 à 23:35.
Licence CC By‑SA.

Étiquettes :

	formatage

	code

	programmation

	indent

[image:]

En programmation on a l’habitude, depuis quelque temps, de formater le code et notamment l’indenter.

L’objectif de ce formatage est généralement de faciliter la coopération, et de rendre le code le plus lisible possible.

Mais la lisibilité de code est forcément un critère avec de la suggestivité.

C’est notamment sur le sujet de l’indentation que j’ai vue passé le plus de désaccord plus ou moins cordiaux.

En ce qui me concerne j’ai toujours préféré indenter avec des tabulations plutôt que les espaces.

Déjà par habitude, j’ai beaucoup plus travaillé dans des bases de code où la règle c’est la tabulation.

Ensuite c’est un seul caractère à taper, stocker et supprimer contre généralement quatre espaces (rarement moins de deux).

Enfin la tabulation permet à chacun de choisir le nombre d’espaces équivalent en fonction de ses propres préférences, voir besoin.

Mais je suis conscient que ce n’est pas parfais, la tabulation à aussi des inconvénients.

Par exemple l’alignement d’un début de ligne avec un “milieu” d’une autre ligne n’est pas compatible avec le choix de la largeur des tabulations. (Bon je pense que c’est une fausse bonne idée pour d’autres raisons).

le formatage “parfait” ?

Du coup je me suis posé la question : si c’était à moi de choisir le formatage d’un projet, quel serais le meilleur ?

Aujourd’hui il y a des outils qui aident bien à conserver et unifier le formatage du code d’un projet. Mais il faut y penser si ce n’est pas automatisé, les assistants dans les éditeurs fonctionnent pas mal quand on écrit le code, souvent moins bien quand on en supprime.

Objectifs

Avant de pouvoir choisir le meilleur formatage, il faut déjà définir les objectifs.

En plus de la lisibilité intrinsèque du code, je souhaite que le formatage génère le moins de diff possible. En effet minimiser les diffs de code facilite les review de code pre et post commmit.

J’ai horreur des changements qui mélange des changements de code (logique) et des lignes avec seulement des changements “cosmétique”.

J’estime que la lisibilité du code a un instant t ne doit pas se faire au détriment de la lisibilité de l’historique.

ça m’est arrivé de travailler avec des personnes qui en C++ alignait le début du nom des variables d’un même groupe.

ça peut aider à la lisibilité du code à un instant t, mais ça demande un effort au programmeur et surtout ça demande de la maintenance quand le code évolue, du coup je classe ça en fausse bonne idée.

De la même manière aligner le début d’une ligne sur le contenu (milieu) d’une autre ligne, demande de la maintenance, cré des modifications de ligne “parasite” dans les diffs. => Fausse bonne idée.

Solution

Du coup, est-ce que le meilleur formatage ne serait pas un formatage “vide” : Aucune indentation, le strict minimum d’espaces ?

Et la lisibilité me direz-vous ?

Pourquoi ça ne serait pas à l’éditeur de code de s’en occuper ?

Avantages :

* plus besoin de taper, stoker et supprimer des caractères (tabulation ou espace) pour une question de formatage.

* la disposition pourrait être mise à jour de façon dynamique au fur et à mesure de la frappe, y compris quand l’utilisateur supprime du code.

* l’affichage pourrait être personnalisé par chaque utilisateur indépendamment vu que c’est l’IDE qui s’en occuperait.

L’inconvénient c’est que ça nécessiterait l’adaptation de nombreux outils ainsi que des changements d’habitudes important. Sans compter que basculer une code-base existante serais très délicat.

J’ai parlé principalement de l’indentation, mais on peut aussi réfléchir à la problématique de la longueur max des lignes de la même façon.

Et vous ?

Est-ce que vous avez déjà réfléchi à votre formatage parfais ? Que serait-il ?

Qui est chaud pour tester d’implémenter ça dans un formateur de code ?

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

