

Journal diss, gestionnaire de session terminal en rust

Posté par yazgoo (site web personnel) le 27 octobre 2022 à 23:56.
Licence CC By‑SA.

Étiquettes :

	multisessions

	rust

	terminal

[image:]

Cher journal, c'est derniers temps j'ai travaillé sur un petit projet en rust, diss.

Site du projet (github)

[image:]

Diss est un programme (ainsi qu'une crate rust) qui permet de détacher une session d'un terminal, comme dtach et abduco

(un peu comme screen ou tmux mais sans le multiplexing de terminal).

L'idée, tout comme abduco, est d'avoir un programme simple pour détacher d'autres programmes,

et de les combiner avec d'autres outils pour faire du multiplexing.

Ici on est en rust donc plus safe d'un point de vue mémoire que le C d'abduco

(3 unsafe utilisés que j'espère enlever petit à petit).

utilisation

en terme d'interface, diss est très proche d'abduco:

Pour lancer une nouvelle session (par exemple la commande vim hello ici):

$ diss -e g -a session-name vim hello

	
-e g indique que pour détache la session il faut faire CTRL+G

	
-a session-name indique le nom de session

on peut connecter plusieurs terminaux à la même session en faisant

$ diss -e g -a session-name

On peut aussi tout à fait utiliser diss comme une crate (lib)

let command = vec![
 "nvim".to_string(),
 "hello".to_string(),
];
diss::run("session-name".to_string(), &command, env_vars, Some("g".into()))?;

Fonctionnement

[image: diagramme]

Lorsque l'on démarre une nouvelle session, diss fork et lance un server, qui va:

	créer et écouter une socket unix (dans ~/.config/diss/<session-name>)

	daemonizer le server (e.g. changer le parent du process pour que ne soit plus le terminal mais à la place init)

	forker:

	le process enfant lance le programme que l'on veut utiliser

	le parent lance un thread pour écouter la sortie de l'enfant

Ensuite, diss lance le client qui se:

	connecte au server via la socket unix

	envoie la taille du terminal

	envoie une demande de flush du terminal

	lance un thread ou il capture les événements (touche, redimensionnement, clear) et les envoie aux server

	reçoit les octets du server et les affiche

Quand un client se connecte, le server:

	ajoute le stream unix au thread d'écoute des événements du process forké

	crée un nouveau thread pour transférer les événements du client au process forké.

futur

J'utilise cette crate au quotidien, ce qui me permet de réparer les bugs petit à petit.

Je suis en train de l'intégrer à mon plugin vim (vmux), (c'est d'ailleurs pour ce projet que j'ai créé diss), mais c'est une histoire pour un autre journal.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/c37eb5ff2488f4b34b0bdaaed15002016f144b0811e66e978293dc59.png

EPUB/2befc4d047747840835f0e4ae5a0474400fe45e4aa6a930567ea9fa7.png
ngra?% output T

Jiss server

pseudo terminal (pty)
progrom (Forked)

el < 2

input
thread | | thread

unix domain
socket

AN Terminal emulator

diss
client 2

EPUB/9a32557b7c18496e584458a3992594d417ad94bcfe23cfdeec05ccf5
p

