

Journal Sortie de Groovy 4.0.0

Posté par YBoy360 (site web personnel) le 31 janvier 2022 à 14:50.
Licence CC By‑SA.

Étiquettes :

	groovy

[image:]

Sommaire

	
Amélioration de l’existant
	Utilisation exclusive du Parrot parser

	Compatibilité à partir du Jdk 7+

	
Nouvelles fonctionnalités (non-incubating)
	Switch expressions

	Sealed Class

	Record-like classes

	Built-in type checkers

	Built-in macro methods

	
Autres améliorations
	Amélioration des performances liées à la gestion des GString

	Enhanced Ranges

	Décimal sans zéro en en-tête

	
Autres nouveautés en "incubation"
	Groovy Contracts

	Groovy-Integrated Query

Groovy est un langage typé optionnellement, dynamique, pouvant supporter la compilation statique. Il utilise la plateforme Java, il permet entre autres la composition de scripts portables (Windows, Linux, Mac avec gestion de dépendances), tout en disposant d’une syntaxe simple et abordable.

Groovy simplifie également la création de DSL, la méta-programmation, la programmation fonctionnelle et la rédaction de tests.

Amélioration de l’existant

Utilisation exclusive du Parrot parser

Il s'agit d'une version optimisée d'ANTLR4 en lieu et place de l’ancien parseur basé sur Antlr2, ce qui permet plus de flexibilité et rend la syntaxe compatible avec celle de Java (c.f. Parrot Parser).

Compatibilité à partir du Jdk 7+

L’un des avantages de Groovy étant le support d’ ancienne version du Jdk.

Nouvelles fonctionnalités (non-incubating)

Voir New Features

Switch expressions

Similaire à ce que propose Java, sauf que la branche default n’est pas obligatoire, dans ce cas null est retourné.

def result = switch(i) {
 case 0 -> 'zero'
 case 1 -> 'one'
 case 2 -> 'two'
 default -> throw new IllegalStateException('unknown number')
}

On peut toujours utiliser les anciennes expressions

def items = [10, -1, 5, null, 41, 3.5f, 38, 99, new Coord(x: 4, y: 5), 'foo']
def result = items.collect { a ->
 switch(a) {
 case null -> 'null'
 case 5 -> 'five'
 case new Custom() -> 'custom'
 case 0..15 -> 'range'
 case [37, 41, 43] -> 'prime'
 case Float -> 'float'
 case { it instanceof Number && it % 2 == 0 } -> 'even'
 case Coord -> a.with { "x: $x, y: $y" }
 case ~/../ -> 'two chars'
 default -> 'none of the above'
 }
}

Pratique pour le pattern "visitor" :

import groovy.transform.Immutable

interface Expr { }
@Immutable class IntExpr implements Expr { int i }
@Immutable class NegExpr implements Expr { Expr n }
@Immutable class AddExpr implements Expr { Expr left, right }
@Immutable class MulExpr implements Expr { Expr left, right }

int eval(Expr e) {
 e.with {
 switch(it) {
 case IntExpr -> i
 case NegExpr -> -eval(n)
 case AddExpr -> eval(left) + eval(right)
 case MulExpr -> eval(left) * eval(right)
 default -> throw new IllegalStateException()
 }
 }
}

@Newify(pattern=".*Expr")
def test() {
 def exprs = [
 IntExpr(4),
 NegExpr(IntExpr(4)),
 AddExpr(IntExpr(4), MulExpr(IntExpr(3), IntExpr(2))), // 4 + (3*2)
 MulExpr(IntExpr(4), AddExpr(IntExpr(3), IntExpr(2))) // 4 * (3+2)
]
 assert exprs.collect { eval(it) } == [4, -4, 10, 20]
}

test()

Sealed Class

La GEP correspondante.

Record-like classes

La définition dans la langue de Shakespeare

model plain data aggregates with less ceremony

record Cyclist(String firstName, String lastName) { }
def richie = new Cyclist('Richie', 'Porte')

Built-in type checkers

Test de la validité des données pendant la phase de compilation, pour le moment limité aux expressions régulières :

@TypeChecked(extensions = 'groovy.typecheckers.RegexChecker')
def whenIs2020Over() {
 def newYearsEve = '2020-12-31'
 def matcher = newYearsEve =~ /(\d{4})-(\d{1,2})-(\d{1,2}/
}

Conduit à une erreur à la compilation :

1 compilation error:
[Static type checking] - Bad regex: Unclosed group near index 26
(\d{4})-(\d{1,2})-(\d{1,2}
 at line: 6, column: 19

Built-in macro methods

println NV(num, list, range, string)

Affiche num=42, list=[1, 2, 3], range=[0, 1, 2, 3, 4, 5], string=foo. Le nom de la variable s'affiche avec son contenu.

println NVI(range)

Affiche range=0..5, c'est l'expression qui définit le range qui est affichée.

NVD est une macro qui affiche le dump().

Autres améliorations

Amélioration des performances liées à la gestion des GString

	Mise en cache du résultat de toString() lorsque cela s'avère sûr ;

	Ajout de la méthode freeze() pour forcer cette mise en cache.

Enhanced Ranges

Actuellement les "ranges" n'étaient que inclusifs (3..5) ou ouverts à droite (4..<10), depuis Groovy 4, les "ranges" peuvent être clos à gauche ou à droite.

Décimal sans zéro en en-tête

Maintenant le code suivant est valide :

def half = .5
def otherHalf = 0.5 // leading zero remains supported
double third = .333d
float quarter = .25f
def fractions = [.1, .2, .3]

Pour les ranges, à droite, il faudra cependant conserver le zéro.

Autres nouveautés en "incubation"

Groovy Contracts

Ajout d'annotation pour la programmation par contrats :

import groovy.contracts.*

@Invariant({ speed() >= 0 })
class Rocket {
 int speed = 0
 boolean started = true

 @Requires({ isStarted() })
 @Ensures({ old.speed < speed })
 def accelerate(inc) { speed += inc }

 def isStarted() { started }

 def speed() { speed }
}

def r = new Rocket()
r.accelerate(5)

Groovy-Integrated Query

Requête de type SQL sur les objets en mémoire (lists, maps, JSON ou XML) :

assert GQ {
 from p in json.prices
 join c in json.vitC on c.name == p.name
 orderby c.conc / p.price in desc
 limit 2
 select p.name
}.toList() == ['Kakuda plum', 'Kiwifruit']

Voila, le nouveau parseur permettra de plus aisément étendre les fonctionnalités de ce langage, qui profite de l'infrastructure du monde Java pour rendre celui-ci plus accessible.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars844057000avatar.png

