

Journal Petit bench de bases de données embarquées

Posté par Mat (site web personnel) le 24 janvier 2007 à 11:49.

Étiquettes :
aucune

[image:]

Bonjour à tous,

Dans le cadre de mon projet, une problématique de contrôle de doublons, afin d'éviter

de faire plusieurs fois le travail sur un même fichier.

Ce contrôle est placé dans un composant qui doit avoir une bonne réactivité,

doit être léger et robuste ; donc avec le moins de middlewares et dépendances

externes possibles. Et s'il plante, il doit n'avoir perdu aucune info : elles doivent

donc être persistées à chaque insertion/suppression. Nous avons pensé utiliser des

bases de données embarquées.

Dans la mesure où nous utilisons Java car ce composant sera utilisé sur plusieurs

OSes différents (AIX, Linux, Windows) et que c'est plus simple que porter une base

à recompiler. Les BDs embarquées que j'ai testées sont toutes écrites en Java.

J'ai testé hsql [1], h2 [2], Derby [3],McKoi [4] et SmallSql [5].

Pour avoir des points de comparaison avec les bases que nous n'utiliserons pas à cause

de cette contrainte, j'ai aussi fait mon test avec la base de données client/serveur

utilisée sur le projet, à savoir DB2 (oui je sais çapuçaipalibre, mais çaipamoikidécide),

et une autre base embarquée écrite en C, à savoir sqlite [6]. (parce que je l'aime bien).

Le test est très simple, et n'est pas du tout complet dans le cadre d'un vrai bench.

Mais dans la mesure où je fournis le code source de ce que j'ai fait [7], vous pouvez

aisément ajouter les tests qui vont intéressent, quitte à faire un bench plus varié.

Mon but était simplement de trouver, dans notre cas précis, quelle base faisait le mieux

l'affaire. Et si j'en cause ici, c'est parce que je sais que ça peut intéresser des gens,

parce que ça cause de libre, et comme ça c'est pas perdu ! :)

Passons aux choses sérieuses.

La table possède 3 colonnes, un id entier clé primaire, un digest (sorte de signature du

fichier) en varchar(256), la date d'insertion en bigint (nombre de ms depuis 1970).

Le digest pouvait tout à fait faire l'affaire de clé primaire.

J'expliquerai plus tard pourquoi j'ai laissé un id.

Le test consiste donc à exécuter une requête de type SELECT sur cette table avec comme

critère un digest. Si aucune ligne n'est retournée, alors une nouvelle est insérée, avec

un nouvel id égal au maximum de l'id courant + 1, le digest, et la date courante en ms.

C'est tout.

Pour voir comment se comportent les bases, j'ai testé sur 1000, 10000 puis 30000 fichiers

pour avoir un panel proche de nos conditions de production.

Le test est déroulé séquentiellement sur ces fichiers.

Pour simuler une demande de travail en double, de manière aléatoire mais proche d'un

pourcentage paramétrable, un fichier est pris au hasard dans la liste, sans interférer sur

le parcours séquentiel. Ainsi, si sa demande de travail a déjà été effectuée, on est bien

dans le cas d'un doublon. Si sa demande n'a pas encore été faite, elle sera refaite par

la suite, et là on aura un doublon.

Pour le fun, j'ai aussi implémenté une pseudo BD fichier, qui est en réalité une hashmap

sérialisée à chaque insertion.

Voici mes résultats sur 1000 fichiers (ce n'est pas trié)

-------------------------------- hsql ----------------------------------

46 doublons, 1000 ajoutés, nombre de boucles :1047

temps total : 1292ms

temps moyen : 1.2340019102196753ms

-------------------------------- derby ----------------------------------

66 doublons, 1000 ajoutés, nombre de boucles :1067

temps total : 5939ms

temps moyen : 5.566073102155577ms

-------------------------------- h2 ----------------------------------

56 doublons, 1000 ajoutés, nombre de boucles :1057

temps total : 2724ms

temps moyen : 2.577105014191107ms

-------------------------------- sqlite ----------------------------------

32 doublons, 1000 ajoutés, nombre de boucles :1033

temps total : 216892ms

temps moyen : 209.96321393998065ms

-------------------------------- mckoi ----------------------------------

48 doublons, 1000 ajoutés, nombre de boucles :1049

temps total : 87115ms

temps moyen : 83.04575786463299ms

-------------------------------- db2 ----------------------------------

68 doublons, 1000 ajoutés, nombre de boucles :1069

temps total : 12558ms

temps moyen : 11.747427502338635ms

-------------------------------- smallsql ----------------------------------

64 doublons, 1000 ajoutés, nombre de boucles :1065

temps total : 14611ms

temps moyen : 13.71924882629108ms

-------------------------------- hashmap ----------------------------------

59 doublons, 1000 ajoutés, nombre de boucles :1060

temps total : 5057ms

temps moyen : 4.770754716981132ms

Toutes ces bases travaillent sur le même ensemble de fichier. Si le nombre de

boucles diffère quelque peu, c'est à cause du pourcentage variable (puisqu'utilisé

dans un calcul contenant un random).

Le temps moyen n'est pas équivalent à une opération en base, mais au temps passé

dans une boucle, donc 1 select + 1 insert (le fichier n'a pas encore été traité)

ou 1 select (le fichier a été traité). Pour les bases ne gérant pas la colonne

auto increment, il y a même dans le cas où le fichier n'a pas encore été traité

un 2e select pour déterminer la valeur de l'id.

Dans mon exemple, il y a environ 5% de doublons donc environ 5% des boucles où

on ne fait qu'1 select. (ce choix est totalement arbitraire).

J'ai été assez déçu des performances de sqlite, qui pourtant est très bon en C,

j'accuse, sans aucune preuve pourtant, son driver JDBC d'être lent. Ou plutôt

l'utilisation de code C en java avec jni ou qque chose du genre qui doit être

capable de ralentir n'importe quel code.

Et très curieusement, la map se comporte très bien ! Enfin curieusement, 1000

fichier c'est pas la mer à boire non plus.

Les autres sont assez proches, à part peut être McKoi un peu en dessous.

Voici mes résultats sur 10000 fichiers

-------------------------------- hsql ----------------------------------

492 doublons, 10000 ajoutés, nombre de boucles :10493

temps total : 5168ms

temps moyen : 0.49251882207185743ms

-------------------------------- derby ----------------------------------

534 doublons, 10000 ajoutés, nombre de boucles :10535

temps total : 59436ms

temps moyen : 5.641765543426673ms

-------------------------------- h2 ----------------------------------

541 doublons, 10000 ajoutés, nombre de boucles :10542

temps total : 8752ms

temps moyen : 0.8302029975336748ms

-------------------------------- sqlite ----------------------------------

536 doublons, 10000 ajoutés, nombre de boucles :10537

temps total : 2071959ms

temps moyen : 196.63651893328273ms

-------------------------------- mckoi ----------------------------------

491 doublons, 10000 ajoutés, nombre de boucles :10492

temps total : 741476ms

temps moyen : 70.6706061761342ms

-------------------------------- db2 ----------------------------------

532 doublons, 10000 ajoutés, nombre de boucles :10533

temps total : 96139ms

temps moyen : 9.127409095224532ms

-------------------------------- smallsql ----------------------------------

515 doublons, 10000 ajoutés, nombre de boucles :10516

temps total : 1302233ms

temps moyen : 123.83349182198555ms

-------------------------------- hashmap ----------------------------------

506 doublons, 10000 ajoutés, nombre de boucles :10507

temps total : 361610ms

temps moyen : 34.41610355001428ms

Les écarts commencent à se dessiner !

Et ceci ne concerne que les temps, je n'ai pas regardé ni la taille sur le disque, ni la place

occupée en mémoire.

Voici mes résultats sur 30000 fichiers :

-------------------------------- hsql ----------------------------------

1572 doublons, 30998 ajoutés, nombre de boucles :32571

temps total : 41200ms

temps moyen : 1.2649289245033926ms

-------------------------------- derby ----------------------------------

1653 doublons, 30998 ajoutés, nombre de boucles :32652

temps total : 262448ms

temps moyen : 8.037731226264853ms

-------------------------------- h2 ----------------------------------

1663 doublons, 30998 ajoutés, nombre de boucles :32662

temps total : 58955ms

temps moyen : 1.8050027554956831ms

-------------------------------- sqlite ----------------------------------

1643 doublons, 30998 ajoutés, nombre de boucles :32642

temps total : 5890079ms

temps moyen : 180.44479504932295ms

-------------------------------- mckoi ----------------------------------

1629 doublons, 30998 ajoutés, nombre de boucles :32628

temps total : 2286808ms

temps moyen : 70.08728699276695ms

-------------------------------- db2 ----------------------------------

1636 doublons, 30998 ajoutés, nombre de boucles :32635

temps total : 306561ms

temps moyen : 9.393626474643787ms

-------------------------------- smallsql ----------------------------------

1648 doublons, 30998 ajoutés, nombre de boucles :32647

temps total : 11981409ms

temps moyen : 366.9987747725672ms

-------------------------------- hashmap ----------------------------------

1575 doublons, 30998 ajoutés, nombre de boucles :32574

temps total : 3917683ms

temps moyen : 120.27024620863266ms

Je vous laisse apprécier les résultats.

Je tiens à préciser qu'à part l'ajout d'un index sur la colonne digest (chose que

SmallSql ne gère pas), et l'utilisation quand cela était possible d'un auto increment,

je n'ai pas du tout cherché à tuner les bases. (enfin si, McKoi un peu, mais ca n'a

rien changé).

Pour en revenir à la colonne d'auto incrémentation; elle ne concerne que les tests,

la colonne digest pouvant tout à fait faire office de clé primaire.

Dans la mesure où le composant est sensé être robuste, j'ai voulu faire des tests

sur la durée. Or je n'ai pas la possibilité de laisser l'ordinateur de test allumé

24h/24 7j/7. Donc je voulais pouvoir couper mon application et la relancer plus tard

et avoir un compteur persistant.

Pour le moment, h2 et hsql (qui sont les 2 bases que j'ai retenues), ont toutes deux

dépassées plusieurs centaines de milliers d'enregistrements, avec en moyenne 30 000

lignes en même temps. (il y a une purge régulière, conformément à nos specs).

Concernant le code source que je fournis gracieusement, mais pour la gloire qd même,

je tiens à préciser qu'il s'agit d'une version allégée de celui que j'utilise en

réalité pour mon projet. Donc le calcul de digest est devenu une fonction qui renvoie

une chaîne aléatoire, de taille fixe.

Il est possible de définir plusieurs threads qui attaquent simultanément la même base,

mais mes logs deviennent inadaptées pour calculer des temps, et par les petites expériences

que j'ai menées sur ce sujet au départ, ça n'apporte rien en terme de perf. (normal

puisqu'au final il y a bien une exécution des requêtes en série.)

Il reste sûrement qques valeurs en dur, du code en commentaire, mais bon, ca devrait

être une bonne base pour qqu'un qui souhaiterait approfondir un peu.

Dernière chose, j'ai placé le niveau d'alerte des logs à FATAL volontairement car

les temps se mesurant en ms, leur incidence est relativement importante. Essayez

par curiosité!

Donc si qqu'un à le courage ou l'envie ou les deux d'agrémenter ces tests, je serai

curieux de connaître ses résultats.

Merci de m'avoir lu !

[1] http://hsqldb.sourceforge.net/ Licence maison ? mais apparemment libre

[2] http://www.h2database.com/ Licence MPL

[3] http://incubator.apache.org/derby Licence Apache Version 2.0

[4] http://mckoi.com/database/ Licence GPL

[5] http://www.smallsql.de/ Licence LGPL

[6] http://sqlite.org Domaine public !!

[7] http://yawks.free.fr/testdb.zip

Il s'agit d'une archive d'un projet Eclipse, il doit pouvoir être importé en tant

que tel, mais je n'ai pas testé. Tous les jars nécessaires sont inclus, à l'exception

du driver jdbc de DB2 pour lequel il doit y avoir une licence proprio, donc par

précaution je ne l'ai pas inclus.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

