

Journal Utiliser Avahi et SSH pour du partage de fichiers

Posté par zebra3 le 17 octobre 2010 à 18:46.

Étiquettes :
aucune

[image:]

	Hello tout le monde,

À la demande générale de JoelTheLion, et comme ça peut servir à d'autres, je me propose dans ce journal de décrire la mise en place de répertoires partagés sur un serveur « à la Windows » mais en mieux.

J'utilise SSH comme protocole de transfert de fichier, Avahi pour déclarer les partages et Nautilus ou Dolphin pour y accéder sans taper au clavier.

Pourquoi c'est mieux :

	parce que c'est libre et ne met en œuvre que des technologies ouvertes,

	parce que c'est du pur Unix & KISS,

	parce que c'est sécurisé,

	parce que c'est fiable, même entre distributions très différentes (essayez de partager un dossier entre Seven et Vista, vous aurez envie de vous pendre avec le câble réseau...),

	parce que c'est ergonomique côté client (deux ou trois clics sous GNOME et KDE).

Dans l'ensemble il n'y a rien ni compliqué ni de nouveau, mais ça permet de compiler toutes les commandes et remarques intéressantes en une page, comme ça pas besoin de chercher. Et puis ça peut donner des idées à d'autres.

Bien sûr, Avahi doit être installé et fonctionnel sur les serveurs et clients (un simple « ping server.local » suffit à valider ce point). KDE a besoin de kde-zeroconf, et GNOME utilise GVFS qui prend ça en charge (bien qu'il vaille mieux avoir gvfs-fuse).

Tout d'abord, rien à faire sur le client si ce n'est créer le couple de clef SSH. Il suffira de lancer avec l'utilisateur à autoriser un bête :

$ ssh-keygen -t dsa

La clef publique à récupérer par la suite est ~/.ssh/id_dsa.pub.

Côté serveur, les manipulations sont plus nombreuses.

On créé le répertoire à partager, ainsi qu'un utilisateur qui en sera propriétaire :

mkdir /srv/share

useradd -m -c "Share user" user

chown -R user /srv/share

Pas besoin de mot de passe puisqu'on va utiliser des clefs.

Personnellement, j'utilise scponly qui n'autorise que les connexions SSH via SCP mais pas l'ouverture de shell, sinon il faut utiliser un shell standard, ce qui laisse un risque potentiel. De plus, utiliser /bin/false ou /sbin/nologin empêchent les transferts SFTP.

Pour ce faire :

chsh -s /usr/bin/scponly user

On autorise les clefs publiques en ajoutant le contenu des ~/.ssh/id_dsa.pub des clients dans le fichier ~/.ssh/authorized_keys sur le serveur.

Ici, on peut déjà vérifier que ça se monte sur les clients, même si ça n'est pas automatique. Sous GNOME, on peut lancer :

$ gvfs-mount sftp://user@server.local

$ gvfs-mount -l

Mount(0): sftp en tant que user sur server.local -> sftp://user@server.local/

Type: GDaemonMount

Si c'est bon, on peut démonter :

$ gvfs-mount -u sftp://user@server.local

(je préfère GNOME entre autres parce qu'on ne peut pas vraiment scripter des trucs comme ça sous KDE, encore que ça doit pouvoir se faire avec Dbus mais ça me semble beaucoup moins évident)

La dernière étape, la déclaration réseau, se fait en créant un fichier .service dans le répertoire /etc/avahi/services, par exemple share.service.

Normalement c'est en XML mais je n'ai pas trouvé comment l'insérer, donc ici c'est avec des crochets :-).
De toute manière il y a des exemples dans /usr/share/doc/avahi-daemon :

[?xml version="1.0" standalone='no'?][!--*-nxml-*--]

[!DOCTYPE service-group SYSTEM "avahi-service.dtd"]

[service-group]

 [name replace-wildcards="yes"]Nom du partage sur %h[/name]

 [service]

 [type]_sftp-ssh._tcp[/type]

 [port]22[/port]

 [txt-record]path=/srv/share[/txt-record]

 [txt-record]u=user[/txt-record]

 [/service]

[/service-group]

On y précise donc juste le répertoire et l'utilisateur avec lequel se connecter.

Pas besoin de relancer Avahi, c'est pris en compte immédiatement.

On vérifie que ça se déclare bien sur le client en lançant :

$ avahi-browse -tr _sftp-ssh._tcp

= eth0 IPv4 Partage sur server.local SFTP File Transfer local

hostname = [server.local]

address = [x.x.x.x]

port = [22]

txt = ["u=user" "path=/srv/share/"]

Avec ça, a-priori tout est bon.

On vérifie avec Nautilus ou Dolphin en ouvrant l'URI network:/ .

Sous Nautilus, le partage doit apparaître directement à la racine et en l'ouvrant, il est monté dans ~/.gvfs si on a gvfs-fuse.

Avec Dolphin, il faut descendre dans « Network Services » puis « Remote disk (sftp) » et on doit voir le partage.

Voilà, j'espère avoir clair et utile. En tout cas, chez moi ça marche tout seul : j'utilise ce système quotidiennement et je n'ai plus les problèmes que j'avais avec le couple NFS/Automount (qui notamment ne supportait pas les coupures réseau). Bon c'est plus lent mais ça reste utilisable.

Quelques remarques :

	pour un réseau domestique c'est super (deux ou trois utilisateurs), pour une entreprise il y a certainement des choses à adapter, toutefois ça ne me paraît pas irréaliste,

	pour plus de sécurité, je désactive les connexions SSH par mot de passe, avec PasswordAuthentication=no dans /etc/ssh/sshd_config,

	comme c'est basé sur SSH et Avahi, il y a de grandes chances que ça fonctionne aussi sous Mac OSX; si quelqu'un peut nous faire un retour, nous en saurions plus,

	en cas de problème au montage, vérifier la configuration SSH et en particulier les permissions de ~/.ssh et de ses fichiers. SSH est très tatillon sur ce point.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars973037000avatar.png

